1
|
Kundu A, Maity B, Basu S. Orange Pomace-Derived Fluorescent Carbon Quantum Dots: Detection of Dual Analytes in the Nanomolar Range. ACS OMEGA 2023; 8:22178-22189. [PMID: 37360434 PMCID: PMC10285992 DOI: 10.1021/acsomega.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Green-emissive carbon quantum dots (CQDs) with exclusive chemosensing aspects were synthesized from orange pomace as a biomass-based precursor via a facile microwave method without using any chemicals. The synthesis of highly fluorescent CQDs with inherent nitrogen was confirmed through X-ray diffraction, X-ray photoelectron, Fourier transform infrared, Raman, and transmission electron microscopic techniques. The average size of the synthesized CQDs was found to be 7.5 nm. These fabricated CQDs displayed excellent photostability, water solubility, and outstanding fluorescent quantum yield, i.e., 54.26%. The synthesized CQDs showed promising results for the detection of Cr6+ ions and 4-nitrophenol (4-NP). The sensitivity of CQDs toward Cr6+ and 4-NP was found up to the nanomolar range with the limit of detection values of 59.6 and 14 nM, respectively. Several analytical performances were thoroughly studied for high precision of dual analytes of the proposed nanosensor. Various photophysical parameters of CQDs (quenching efficiency, binding constant, etc.) were analyzed in the presence of dual analytes to gain more insights into the sensing mechanism. The synthesized CQDs exhibited fluorescence quenching toward incrementing the quencher concentration, which was rationalized by the inner filter effect through time-correlated single-photon counting measurements. The CQDs fabricated in the current work exhibited a lower detection limit and a wide linear range through the simple, eco-friendly, and rapid detection of Cr6+ and 4-NP ions. To evaluate the feasibility of the detection approach, real sample analysis was conducted, demonstrating satisfactory recovery rates and relative standard deviations toward the developed probes. This research paves the way for developing CQDs with superior characteristics utilizing orange pomace (biowaste precursor).
Collapse
Affiliation(s)
- Aayushi Kundu
- School
of Chemistry and Biochemistry, Senior Research Fellow—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Banibrata Maity
- School
of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Soumen Basu
- School
of Chemistry and Biochemistry, Affiliate Faculty—TIET-Virginia
Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
2
|
Saengsrichan A, Khemthong P, Wanmolee W, Youngjan S, Phanthasri J, Arjfuk P, Pongchaikul P, Ratchahat S, Posoknistakul P, Laosiripojana N, Wu KCW, Sakdaronnarong C. Platinum/carbon dots nanocomposites from palm bunch hydrothermal synthesis as highly efficient peroxidase mimics for ultra-low H2O2 sensing platform through dual mode of colorimetric and fluorescent detection. Anal Chim Acta 2022; 1230:340368. [DOI: 10.1016/j.aca.2022.340368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
3
|
González-González RB, Morales-Murillo MB, Martínez-Prado MA, Melchor-Martínez EM, Ahmed I, Bilal M, Parra-Saldívar R, Iqbal HMN. Carbon dots-based nanomaterials for fluorescent sensing of toxic elements in environmental samples: Strategies for enhanced performance. CHEMOSPHERE 2022; 300:134515. [PMID: 35398070 DOI: 10.1016/j.chemosphere.2022.134515] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
Rapid industrialization and manufacturing expansion have caused heavy metal pollution, which is a critical environmental issue faced by global population. In addition, the disadvantages presented by conventional detection methods such as the requirement of sophisticated instruments and qualified personnel have led to the development of novel nanosensors. Recently, carbon dots (CDs) have been presented as a multifunctional nanomaterial alternative for the accurate detection of heavy metal ions in water systems. The capacity of CDs to detect contaminants in wastewater -including heavy metals- can be found in the literature; however, to the best of our knowledge, none of them discusses the most recent strategies to enhance their performance. Therefore, in this review, beyond presenting successful examples of the use of CDs for the detection of metal ions, we further discuss the strategies to enhance their photoluminescence properties and their performance for environmental monitoring. In this manner, strategies such as heteroatom-doping and surface passivation are reviewed in detail, as well as describing the mechanisms and the effect of precursors and synthesis methods. Finally, the current challenges are described in detail to propose some recommendations for further research.
Collapse
Affiliation(s)
| | - Martha Beatriz Morales-Murillo
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | - María Adriana Martínez-Prado
- Tecnológico Nacional de México - Instituto Tecnológico de Durango, Chemical & Biochemical Engineering Department, Blvd. Felipe Pescador 1830 Ote., Durango, Dgo., 34080, Mexico
| | | | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD, 4222, Australia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
4
|
Laddha H, Yadav P, Agarwal M, Gupta R. Quick and hassle-free smartphone's RGB-based color to photocatalytic degradation rate assessment of malachite green dye in water by fluorescent Zr-N-S co-doped carbon dots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56684-56695. [PMID: 35347616 DOI: 10.1007/s11356-022-19808-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Sunlight active blue emissive zirconium, nitrogen, and sulfur co-doped carbon dots (Zr-N-S-CDs) have been synthesized by microwave-induced pyrolysis for achieving efficient photocatalytic degradation of pollutant malachite green dye (MG) in water. Surface morphology studies using high-resolution transmission electron microscopy confirmed the formation of spherical-shaped CDs with an absorbance peak at 350 nm and emission peak at 437 nm in UV-vis and fluorescence spectroscopy, respectively. Surface functional groups, elemental composition, and metal/non-metal co-doping were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. To understand the photocatalytic performance of Zr-N-S-CDs, various parameters, such as the source of energy, concentration of dye, catalyst dosage, and change in pH, were investigated. MG dye (20 ppm) at a pH 7 with 0.5 mg/mL of Zr-N-S-CDs could be photodegraded efficiently in 90 min under sunlight (99%) compared to dark and artificial light conditions. Moreover, real-time analysis of degradation rate could be conveniently calculated by integrating the colorimetric responses of MG dye with RGB values obtained by the "Color Picker" app of a smartphone. The degradation rate obtained using a smartphone (97.89%) was found to be in agreement with the UV-vis spectroscopy (99%), thus, providing a new, handy, and instrument-free route for speedy and quantitative estimation of the degradation of hazardous MG dye by Zr-N-S-CDs.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Priya Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
5
|
Wang G, Zhang S, Cui J, Gao W, Rong X, Lu Y, Gao C. Preparation of nitrogen-doped carbon quantum dots from chelating agent and used as fluorescent probes for accurate detection of ClO− and Cr(Ⅵ). Anal Chim Acta 2022; 1195:339478. [DOI: 10.1016/j.aca.2022.339478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/01/2022]
|
6
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advancements in the synthesis of carbon dot composites and their applications in biomedical fields (bioimaging, drug delivery and biosensing) have been carefully summarized. The current challenges and future trends of CD composites in this field have also been discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
7
|
Hashemi N, Mousazadeh MH. Green synthesis of photoluminescent carbon dots derived from red beetroot as a selective probe for Pd2+ detection. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. J Fluoresc 2021; 31:1705-1717. [PMID: 34424483 DOI: 10.1007/s10895-021-02798-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Nanostructured fluorescent particles derived from natural molecules were prepared by a green synthesis technique employing a microwave method. The precursors citric acid (CA) and cysteine (Cys) were used in the preparation of S- and N-doped Cys carbon dots (Cys CDs). Synthesis was completed in 3 min. The graphitic structure revealed by XRD analysis of Cys CDs dots had good water dispersity, with diameters in the range of 2-20 nm determined by TEM analysis. The isoelectric point of the S, N-doped CDs was pH value for 5.2. The prepared Cys CDs displayed excellent fluorescence intensity with a high quantum yield of 75.6 ± 2.1%. Strong antimicrobial capability of Cys CDs was observed with 12.5 mg/mL minimum bactericidal concentration (MBC) against gram-positive and gram-negative bacteria with the highest antimicrobial activity obtained against Staphylococcus aureus. Furthermore, Cys CDs provided total biofilm eradication and inhibition abilities against Pseudomonas aeruginosa at 25 mg/mL concentration. Cys CDs are promising antioxidant materials with 1.3 ± 0.1 μmol Trolox equivalent/g antioxidant capacity. Finally, Cys CDs were also shown to inhibit the acetylcholinesterase (AChE) enzyme, which is used in the treatment of Alzheimer's disease, even at the low concentration of 100 μg/mL.
Collapse
|