1
|
Lee JY, Chia RW, Veerasingam S, Uddin S, Jeon WH, Moon HS, Cha J, Lee J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174297. [PMID: 38945237 DOI: 10.1016/j.scitotenv.2024.174297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Microplastic (MP) pollution in urban environments is a pervasive and complex problem with significant environmental and human health implications. Although studies have been conducted on MP pollution in urban environments, there are still research gaps in understanding the exact sources, regulation, and impact of urban MP on the environment and public health. Therefore, the goal of this study is to provide a comprehensive overview of the complex pathways, harmful effects, and regulatory efforts of urban MP pollution. It discusses the research challenges and suggests future directions for addressing MPs related to environmental issues in urban settings. In this study, original research papers published from 2010 to 2024 across ten database categories, including PubMed, Google Scholar, Scopus, and Web of Science, were selected and reviewed to improve our understanding of urban MP pollution. The analysis revealed multifaceted sources of MPs, including surface runoff, wastewater discharge, atmospheric deposition, and biological interactions, which contribute to the contamination of aquatic and terrestrial ecosystems. MPs pose a threat to marine and terrestrial life, freshwater organisms, soil health, plant communities, and human health through ingestion, inhalation, and dermal exposure. Current regulatory measures for MP pollution include improved waste management, upgraded wastewater treatment, stormwater management, product innovation, public awareness campaigns, and community engagement. Despite these regulatory measures, several challenges such as; the absence of standardized MPs testing methods, MPs enter into the environment through a multitude of sources and pathways, countries struggle in balancing trade interests with environmental concerns have hindered effective policy implementation and enforcement. Addressing MP pollution in urban environments is essential for preserving ecosystems, safeguarding public health, and advancing sustainable development. Interdisciplinary collaboration, innovative research, stringent regulations, and public participation are vital for mitigating this critical issue and ensuring a cleaner and healthier future for urban environments and the planet.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - S Veerasingam
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Saif Uddin
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Jejung Lee
- School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| |
Collapse
|
2
|
Purushothaman A, Vishnudattan NK, Nehala SP, Meghamol MD, Neethu KV, Joseph J, Nandan SB, Padmakumar KB, Thomas LC. Patterns and variability in the microplastic contamination along the southwest coast of India with emphasis on submarine groundwater discharge sites. MARINE POLLUTION BULLETIN 2023; 194:115432. [PMID: 37639866 DOI: 10.1016/j.marpolbul.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Beach sediments of the southwest coast of India were analysed to estimate the microplastic contamination with emphasis on the submarine groundwater discharge (SGD) zones. Both SGD and non-SGD sites were assessed for abundance, morphotype and polymer type of microplastics. Microplastic load was 230.429 ± 62.87 particles per 100 g. Fibre, mainly blue, was the abundant morphotype, followed by fragment, foam and film. The polymer types were POLYETHYLENE (PE) (30.77 %), POLYPROPYLENE (PP) (26.92 %), POLYAMIDE (PA) (19.23 %), POLYSTYRENE (PS) (11.54 %), ETHYLENE VINYL ACETATE (EVA) (7.692 %) and POLYVINYL CHLORIDE (PVC) (3.846 %). The SGD zones exhibited higher microplastic contamination with statistically significant variations from non SGD sites. The study accounts the levels of microplastic contamination along the southwest coast of India, a major fishery zone. The higher abundance of microplastic in the SGD zones indicates the significance of subterranean groundwater through flow as a pathway of anthropogenic contaminants towards marine ecosystems.
Collapse
Affiliation(s)
- Aishwarya Purushothaman
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - N K Vishnudattan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - S P Nehala
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - M D Meghamol
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - K V Neethu
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Jorphin Joseph
- Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - K B Padmakumar
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Lathika Cicily Thomas
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India.
| |
Collapse
|
3
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
4
|
Rios-Fuster B, Compa M, Alomar C, Morató M, Ryfer D, Villalonga M, Deudero S. Are seafloor habitats influencing the distribution of microplastics in coastal sediments of a Marine Protected Area? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49875-49888. [PMID: 36787062 PMCID: PMC9925937 DOI: 10.1007/s11356-023-25536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023]
Abstract
The marine environment is affected by the increasing presence of microplastics (MPs; < 5 mm), and the seafloor acts as a sink for these particles. Locations with different predominant seafloor habitat and protection level applied were selected from Cabrera Marine-Terrestrial National Park (henceforth, Cabrera MPA) (western Mediterranean Sea) with the aim to assess the distribution of MPs along the sediments of this Mediterranean MPA. A total of 37 samples were collected. A high diversity of sediment between locations was detected according to the Udden-Wentworth classification and locations were clustered into two main groups according to the predominance of different particle size fractions. The identification of MPs was carried out according to the sediment particle size classification. A total of 1431 MPs and a mean value (± SD) of 314.53 ± 409.94 items kg-1 D.W. were identified, and 70% of the particles were fibers. Statistically higher abundances of MPs were found in sediments collected from sandy habitats, with a mean value of 630.80 ± 636.87 items kg-1 D.W., compared to the abundances of MPs found in locations with different predominant seafloor habitats, that ranged from 136.79 ± 156.33 items kg-1 D.W. in habitats with similar predominance of seagrass and sand to 223.02 ± 113.35 items kg-1 D.W. in habitats with similar predominance of rocks and sand. The abundance of MPs regarding each sediment particle size fraction differed between years and locations, and the abundance of MPs according to each identified shape differed between sampling years, particle size fraction, and predominant seafloor habitat. The present study highlights the ubiquitous presence of MPs in seafloor sediments from a MPA. Furthermore, the results suggest that the predominant seafloor habitat can modulate the presence of MPs in marine environments in both general abundances and shape of items.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain.
| | - Montserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Mercè Morató
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Diane Ryfer
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Margarita Villalonga
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
5
|
Mylius KA, Lavers JL, Woehler EJ, Rodemann T, Keys BC, Rivers-Auty J. Foraging strategy influences the quantity of ingested micro- and nanoplastics in shorebirds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120844. [PMID: 36596375 DOI: 10.1016/j.envpol.2022.120844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Coastlines, including estuaries, mudflats, and beaches, are particularly susceptible to plastic pollution, which can accumulate from both marine and terrestrial sources. While numerous studies have confirmed the presence of microplastics (1-5 mm) along coastlines, few have focused on very small particles (<1 μm) or quantified exposure within the organisms that inhabit these areas, such as shorebirds. Here, we quantified small plastics (200 nm-70 μm) in two resident shorebird species in Tasmania, and compared this to quantities found in the surrounding sediments in order to investigate the potential exposure and transfer of particles within these ecosystems. Analysis was performed using a combination of flow cytometry for quantification of micro- and nanoplastics (200 nm-70 μm), and μm-FT-IR for validation and polymer identification of particles >5.5 × 5.5 μm. Micro- and nano-plastics were detected in 100% of guano samples from surface-feeding Eastern Hooded Plovers (Thinornis cucullatus) and 90% of Australian Pied Oystercatcher (Haematopus longirostris) guano, a species that forages for coastal invertebrates at 60-90 mm depth, and 100% of beach sediments. Hooded Plover guano contained 32 × more plastics, on average, than Pied Oystercatcher guano. Interestingly, the abundance of plastic particles within sediments collected from shorebird foraging sites did not appear to have a significant effect on the number of plastics the birds had ingested, suggesting the difference between species is likely a result of other variables, such as prey selection. The results of this study highlight the importance of including techniques that provide quantitative data on the abundance and size of the smallest possible particle sizes, and demonstrate the significant proportion of small plastics that are 'missed' using standard analysis tools.
Collapse
Affiliation(s)
- Karli A Mylius
- Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia; Esperance Tjaltjraak Native Title Aboriginal Corporation, 11A Shelden Road, Esperance, Western Australia, 6450, Australia.
| | | | - Thomas Rodemann
- Central Sciences Laboratory, University of Tasmania, Dynnyrne, Tasmania, 7005, Australia
| | - Bianca C Keys
- Institute for Marine and Antarctic Studies, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Jack Rivers-Auty
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
6
|
Ghadrshenas A, Tabatabaie T, Amiri F, Pazira AR. Distribution, source finding, ecological hazard assessment, and water-sediment exchange rate of polychlorinated biphenyl (PCB) congeners in South Pars Industrial Zone, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:157. [PMID: 36441256 DOI: 10.1007/s10661-022-10618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
South Pars Industrial Zone is located near an Assaluyeh city on the coast of the Persian Gulf and is known as the energy capital of Iran. In this study, environmental and health effects due to PCB congeners had an assessment. In this study, 10 air stations, 10 seawater, and sediments stations were systematically selected and sampled in two seasons. Air, seawater, and sediment pollution made by polychlorinated biphenyls (PCBs) were evaluated. Seawater-sediment exchange conditions using the fugacity coefficient reviewed. PCB levels in marine sediments, seawater, and air based on the analysis of the obtained data were 107.33-172.92 ng/g, ND-135.68 ng/L, and ND-4.4 ng/m3, respectively. The highest concentration was observed in the vicinity of refineries, petrochemicals, and petroleum export facilities. These values had increased significantly compared to values of studies, conducted in similar areas. The sources were electrical wastes, storage sites, power generation units, and wastewater treatment. The ecological risk of seawater was assessed to be low to high, while sediment risks were reported with a low to moderate risk range. In 70% of the stations, the predominant transfer was from sediments to seawater; sediments were in fact the secondary source of seawater pollution. It is suggested for the area to be continuously monitored, while engineering and management measures should be adopted to improve the situation and also prevent the spread of pollution.
Collapse
Affiliation(s)
- Alireza Ghadrshenas
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Fazel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Abdul Rahim Pazira
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
7
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R. Spatial, seasonal and ecological risk assessment of microplastics in sediment and surface water along the Thoothukudi, south Tamil Nadu, south east India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:820. [PMID: 36138235 DOI: 10.1007/s10661-022-10468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are a widespread environmental contaminant that raises serious concern for aquatic organisms. Hence, the present study was conducted to investigate the spatial and seasonal variation of microplastics, their characteristics, polymer types and the risk assessment caused by the microplastics in six sampling sites along the Thoothukudi region. The average microplastic abundance ranged from 32 ± 26 to 232 ± 229 items/kg and 54 ± 41 to 619 ± 377 items/l in sediment and surface water, respectively, and they exhibited a significant spatial difference among the sampling sites. The microplastic abundance also showed a significant difference among the seasons with the monsoon significantly recording the highest mean microplastic abundance in sediment (160 ± 130 items/kg) and surface water (454 ± 374 items/l). In sediment and surface water, fragment (sediment: 52.72%, surface water: 40.89%), 0.5-1 mm (sediment: 43.96%, surface water: 31.11%) and blue-coloured (sediment: 52.33%, surface water: 41.85%) microplastics were dominant with no significant difference both spatially and seasonally. Polyethylene, the dominant polymer, was observed in both the sediment and surface water, accounting for about 47.58% and 49.83%, respectively, and it showed no significant difference among the selected sites. This signifies that they are homogenously distributed along the coast and further suggests that these particles persisted in the sediment and surface water for a longer period of time. The results of the polymer hazard index show that the sediment (PHI = 1181.63) and surface water (PHI = 1018.66) were severely contaminated (hazard level V) with microplastic polymers such as PE, PP, PS, PET and PA. It was also found that the degree of the microplastic contamination in sediment (PLI = 3.57) and surface water (PLI = 3.84) was lower (hazard level I). The overall risk index (RI) for sediment (253.48) and surface water (444.74) falls under the higher risk category. From the correlation analysis, a significantly positive relationship was observed between microplastics in sediment and surface water based on each classification (abundance, shape, size, colour and polymer). This suggests that microplastics rejoin the water column from the sediment through resuspension, which occurs due to the circulation, tides and sedimentation rate. This might be the reason for the higher microplastic abundance in the surface water than in the sediment. As a result, proper management measures to reduce plastic waste disposal in the marine environment should be implemented to lessen the effects of microplastics on marine biota and on public health.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India.
| | - Pandurangan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Robinson Jeyashakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of Fisheries, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
8
|
Veerasingam S, Chatting M, Asim FS, Al-Khayat J, Vethamony P. Detection and assessment of marine litter in an uninhabited island, Arabian Gulf: A case study with conventional and machine learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156064. [PMID: 35597358 DOI: 10.1016/j.scitotenv.2022.156064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In 2018, the Ministry of Municipality and Environment, Qatar removed 90 t of marine litter (ML) from the Ras Rakan Island (RRI), a remote uninhabited island in the Arabian Gulf (hereinafter referred to as Gulf). To identify the sources of ML and understand the post-cleaning ML accumulation rate, a ML survey was conducted around RRI in 2019. A total of 1341 ML items were found around RRI with an average abundance of 3.4 items/m2. In addition, a machine learning approach was applied to extract the quantity and types of ML from 10,400 images from the sampling sites (beaches) to make the ML clean-up process and monitoring effort more efficient. The image coordinates of ML objects were used to train an object detection algorithm 'You Only Look Once (YOLO-v5)' to automatically detect ML from video data. An image enhancement technique was performed to improve the quality of unclear images. The best performing YOLO-v5 model had 90% of mean Average Precision (mAP) while maintaining near real-time processing speeds at 2 ms/image. The abundance of ML around RRI was higher than that found on the coast of mainland Qatar. 61.5% of the sampling locations are considered as 'extremely dirty' based on Clean Coast Index. Windward beaches had higher ML concentrations (derived from neighbouring countries) than the leeward beaches. Like RRI, most of the uninhabited islands in the Arabian Gulf are home to many seabirds and sea turtles, and could act as major sinks for ML deposition. Therefore, implementation of this machine learning technique to all islands allows estimating and mitigating the load of ML for achieving a sustaining and a cleaner ocean.
Collapse
Affiliation(s)
- S Veerasingam
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Mark Chatting
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Fahad Syed Asim
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Jassim Al-Khayat
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - P Vethamony
- UNESCO Chair in Marine Sciences, Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
9
|
Khaleel R, Valsan G, Rangel-Buitrago N, Warrier AK. Hidden problems in geological heritage sites: The microplastic issue on Saint Mary's Island, India, Southeast Arabian Sea. MARINE POLLUTION BULLETIN 2022; 182:114043. [PMID: 35985130 DOI: 10.1016/j.marpolbul.2022.114043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) have become a dominant constituent of several oceanic islands. This study focuses on the occurrence and distribution of MPs present in the beach sediments of Saint Mary's Island (SMI), a geological heritage site located in the south-eastern part of the Arabian Sea. The average (standard deviation) abundance of MPs on this island was 97.18 (80.49) particles/kg. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy revealed that MPs are composed of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyamide (PA). Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) highlighted the presence of Cr, As, Pb, and Cd (harmful pollutants) on MP surfaces. The MPs in the SMI are largely contributed by the nearby fishing harbour, touristic beaches and estuaries. The results of this study, act as a starting point for continuous environmental monitoring in this unique region of the world.
Collapse
Affiliation(s)
- Rizwan Khaleel
- Department of Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia; Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for Climate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
10
|
Ranjani M, Veerasingam S, Venkatachalapathy R, Jinoj TPS, Guganathan L, Mugilarasan M, Vethamony P. Seasonal variation, polymer hazard risk and controlling factors of microplastics in beach sediments along the southeast coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119315. [PMID: 35439596 DOI: 10.1016/j.envpol.2022.119315] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 05/26/2023]
Abstract
Microplastics (MPs) and its associated organic and inorganic contaminants are one among the significant health hazards to almost all biota, including human. We investigated the polymer hazard risk and its adsorbed contaminants in MPs at six prominent beaches of Chennai on the southeast coast of India. The spatial variation of MPs during the northeast (NE) monsoon (range: 76-720 items/kg, mean: 247.4 items/kg) was higher than that during southwest (SW) monsoon (range: 84-498 items/kg, mean: 302.7 items/kg). In both the seasons, polyethylene (PE) and polypropylene (PP) were the dominant polymers and fibre was the predominant shape of MPs, likely to be derived from fishing, textile and urban activities in this region. Scanning electron microscope (SEM) images exhibited various surface weathering features including grooves, cracks, fractures, adhering particles, pits, vermiculate textures and fibre reinforcements. Energy dispersive X-ray spectrometer (EDS) results showed that MPs have adsorbed major (Si, Al, Na, Mg, Ca, Fe and Ti) and trace (Cu, Cr, Ni, Pb and Zn) metals. Though pollution load index (PLI) presented low degree of MP contamination in the beach sediments, hazardous polymers such as polyvinyl chloride (PVC), polyamide (PA) and polystyrene (PS) contributed to high polymer hazard index (PHI) and potential ecological risk index (PERI), posing very high risk to the biota. The trajectories obtained from particle-tracking coupled with hydrodynamic simulation clearly showed that 20% of MPs settled along the coast and the remaining moved towards north, alongshore and offshore (∼50 km) within 30 days, and in NE monsoon due to current reversal, the floating debris and MPs have drifted towards south, ∼40 km in 30 days, indicating the role of circulation in the fate and transport pathways of plastic debris.
Collapse
Affiliation(s)
- M Ranjani
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - S Veerasingam
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar.
| | - R Venkatachalapathy
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - T P S Jinoj
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Chennai, 600 100, Tamil Nadu, India
| | - L Guganathan
- Department of Physics, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, Tamil Nadu, India
| | - P Vethamony
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar
| |
Collapse
|
11
|
Neelavannan K, Achyuthan H, Sen IS, Krishnakumar S, Gopinath K, Dhanalakshmi R, Rajalakshmi PR, Sajeev R. Distribution and characterization of plastic debris pollution along the Poompuhar Beach, Tamil Nadu, Southern India. MARINE POLLUTION BULLETIN 2022; 175:113337. [PMID: 35093779 DOI: 10.1016/j.marpolbul.2022.113337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 05/26/2023]
Abstract
The present study was carried out to determine the characteristics, distribution, and abundance of plastic debris in 25 sediment samples collected from the Poompuhar beach, southeast coast of India. The result reveals that the mean plastic debris abundance was 42 ± 27 particles/m2 dry weight (dw) (1 SD, n = 25) with higher concentrations in the river mouth. The dominant shapes in the study area were fragment (70.7%), followed by fiber (20.7%), and pellet-shaped (8.6%). The dominant colors of the plastic debris were: white-colored (47%) followed by blue (28%) and green (14%). The study further reveals that the dominant polymer type was polyethylene (PE, 63.4%), followed by nylon (PA, 16.9), polyvinyl chloride (PVC, 15.5%), polypropylene (PP, 3.1%), and polystyrene (PS, 1.1%). In the study area, the main source of plastic debris was from land-based fishing and tourism activities, and rainwater runoff from the Cauvery River.
Collapse
Affiliation(s)
- Kannaiyan Neelavannan
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Hema Achyuthan
- Institute for Ocean Management, Anna University, Chennai 600025, India.
| | - Indra Sekhar Sen
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - S Krishnakumar
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Geology, Malankara catholic college, Mariyagiri, Kaliyakkavilai, Kanyakumari 629153, India
| | - Kalpana Gopinath
- Institute for Ocean Management, Anna University, Chennai 600025, India; Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97754, Sweden
| | - R Dhanalakshmi
- Department of Geography, Queen Mary's College, Chennai 600 004, India
| | - P R Rajalakshmi
- Institute for Ocean Management, Anna University, Chennai 600025, India
| | - Riffin Sajeev
- Institute for Ocean Management, Anna University, Chennai 600025, India
| |
Collapse
|
12
|
Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers (Basel) 2021; 13:polym13203539. [PMID: 34685298 PMCID: PMC8541195 DOI: 10.3390/polym13203539] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Plastic waste pollution and its difficult degradation process have aroused widespread concern. Research has demonstrated that the larvae of Tenebrio molitor (yellow mealworm), Galleria mellonella (greater wax moth), and Zophobas atratus (superworm) possess a biodegradation ability for polystyrene (PS) within the gut microbiota of these organisms. In this study, the difference in PS degradation and the changes of the gut microbiota were compared before and after feeding PS. The results showed that superworm had the strongest PS consumption capacity and the highest survival rate during the 30 d experiment period. They all could degrade PS to different degrees. Superworm showed the highest ability to degrade PS into low-molecular-weight substances, while yellow mealworm depolymerized PS strongly by destroying the benzene ring. The changes of the intestinal microbiome caused by feeding PS showed that after ingesting PS, there was a decrease in community diversity in superworm and yellow mealworm, but an increase in greater wax moth. Meanwhile, Enterococcus and Enterobacteriaceae, found in all three species’ larvae upon 20 d of PS feeding, might play an important role in PS degradation. The results will provide more accurate PS degradation comparative data of the three species’ larvae and theoretical guidance for further research on the efficient PS biodegradations.
Collapse
|
13
|
Sarkar AK, Rubin AE, Zucker I. Engineered Polystyrene-Based Microplastics of High Environmental Relevance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10491-10501. [PMID: 34291927 PMCID: PMC8383278 DOI: 10.1021/acs.est.1c02196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 05/19/2023]
Abstract
Microplastic (MP) pollution-an emerging environmental challenge of the 21st century-refers to accumulation of environmentally weathered polymer-based particles with potential environmental and health risks. Because of technical and practical challenges when using environmental MPs for risk assessment, most available data are generated using plastic models of limited environmental relevancy (i.e., with physicochemical characteristics inherently different from those of environmental MPs). In this study, we assess the effect of dominant weathering conditions-including thermal, photo-, and mechanical degradation-on surface and bulk characteristics of polystyrene (PS)-based single-use products. Further, we augment the environmental relevance of model-enabled risk assessment through the design of engineered MPs. A set of optimized laboratory-based weathering conditions demonstrated a synergetic effect on the PS-based plastic, which was fragmented into millions of 1-3 μm MP particles in under 16 h. The physicochemical properties of these engineered MPs were compared to those of their environmental counterpart and PS microbeads often used as MP models. The engineered MPs exhibit high environmental relevance with rough and oxidized surfaces and a heterogeneous fragmented morphology. Our results suggest that this top-down synthesis protocol combining major weathering mechanisms can fabricate improved, realistic, and reproducible PS-based plastic models with high levels of control over the particles' properties. Through increased environmental relevancy, our plastic model bolsters the field of risk assessment, enabling more reliable estimations of risk associated with an emerging pollutant of global concern.
Collapse
Affiliation(s)
- Amit Kumar Sarkar
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Porter
School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrey Ethan Rubin
- Porter
School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ines Zucker
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Porter
School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Al-Khayat JA, Veerasingam S, Aboobacker VM, Vethamony P. Hitchhiking of encrusting organisms on floating marine debris along the west coast of Qatar, Arabian/Persian Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145985. [PMID: 33639474 DOI: 10.1016/j.scitotenv.2021.145985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The floating marine debris (FMD) and the associated rafting communities are one of the major stressors to ecosystem services, global biodiversity and economy and human health. In this study, assemblages of encrusting organisms on different types of stranded FMD along the west coast of Qatar, Arabian/Persian Gulf (hereafter referred to as 'Gulf') were examined. The analysis showed 18 fouling species belonging to 5 phyla (Annelida, Anthropoda, Bryozoa, Mollusca and Porifera) on the FMD. The most abundant fouling species were the encrusting Amphibalanus amphitrite, polychaete Spirobranchus kraussii, Bryozoan species and Megabalanus coccopoma. More number of taxa were found on larger size FMD than on smaller FMD. Some of the barnacle rafting types were found to be non-indigenous species. The central and northwest parts of the Qatar had more FMD and fouled species than in other locations. Winds and the prevailing hydrodynamic conditions (waves and currents) played an important role in the transportation and distribution of FMD and associated organisms along the west coast of Qatar. The present study confirmed that huge amount of bio-fouled FMD items, causing great damage to biodiversity, drift in the surface layer of ocean and eventually strand onto the beaches. We propose a simple, but an effective management plan for FMD and associated organisms at regional scale to restore the biodiversity, sustainability and health of the marine ecosystem in the Gulf.
Collapse
Affiliation(s)
- Jassim A Al-Khayat
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - S Veerasingam
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - V M Aboobacker
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - P Vethamony
- Environmental Science Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
15
|
Ranjani M, Veerasingam S, Venkatachalapathy R, Mugilarasan M, Bagaev A, Mukhanov V, Vethamony P. Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis. MARINE POLLUTION BULLETIN 2021; 163:111969. [PMID: 33515857 DOI: 10.1016/j.marpolbul.2021.111969] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 05/06/2023]
Abstract
Abundance, chemical composition and ecological risk of microplastics (MPs) in terrestrial and marine environments have merited substantial attention from the research communities. This is the first attempt to comprehend the ecological risk of MPs in sediments along the Indian coast using meta-data. Polymer hazard index (PHI), pollution load index (PLI) and potential ecological risk index (PERI) were used to evaluate the quality of sediments. Areas have high PHI values (>1000) due to the presence of polymers with high hazard scores such as polyamide (PA) and polystyrene (PS). According to PLI values, sediments along the west coast of India (WCI) are moderately contaminated with MPs (PLI: 3.03 to 15.5), whereas sediments along the east coast of India (ECI) are less contaminated (PLI: 1 to 6.14). The PERI values of sediments along the Indian coast showed higher ecological risk for the metropolitan cities, river mouths, potential fishing zones and the remote islands.
Collapse
Affiliation(s)
- M Ranjani
- Department of Physics, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - S Veerasingam
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar.
| | - R Venkatachalapathy
- Department of Physics, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, Tamil Nadu, India
| | - Andrei Bagaev
- Department of Shelf Hydrophysics, Federal Research Center Marine Hydrophysical Institute of RAS, Sevastopol 299011, Russia
| | - Vladimir Mukhanov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russia
| | - P Vethamony
- Environmental Science Center, Qatar University, P.O. Box: 2713, Qatar
| |
Collapse
|