1
|
Ramesh M, Selvaraju SG, Poopal RK, Ren Z, Li B. Impact of continuous Triazophos exposure on Labeo rohita: Physiological, biochemical, and histological alterations and IBRv2 index assessment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106043. [PMID: 39277370 DOI: 10.1016/j.pestbp.2024.106043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Pesticides are commonly used in agriculture and aquaculture. Triazophos, an organophosphate-based pesticide, is widely used in agriculture to control many insect pests. Due to its high photochemical stability and mode of action, Triazophos could persist in the aquatic ecosystem and cause toxic effects on non-target organisms. We have studied the potential toxic effects of Triazophos on L. rohita. Primarily, we determined the median lethal concentration (LC50) of Triazophos for 24 and 96 h. Next, we studied acute (96 h, LC50-96 h) toxicity. Then, we studied chronic (35 days, 1/10th LC50-24 h Treatment I: 0.609 mg/L, 1/5th LC50-96 h Treatment II: 1.044 mg/L) toxicity. We analyzed blood biomarkers such as hematology (Hb, Hct, RBC, WBC, MCV, MCH and MCHC), prolactin, cortisol, glucose and protein levels. Concurrently, we analyzed tissue biomarkers such as glycogen, GOT, GPT, LDH and histopathology. IBRv2 index assessment method was also to evaluate the Triazophos toxicity. Studied hematological, hormonal, biochemical and enzymological biomarkers were affected in Triazophos treated groups when compare to the control group. The changes in these biomarkers were statistically significant at the 0.05 alpha level. Triazophos exposed fish shown a severe degenerated primary and secondary lamellae, lamellar fusion, hypertrophy and telangiectasia in the gills. In the hepatic tissue, it caused moderate necrosis, blood congestion, distended sinusoids with minor vacuolation, prominent pyknotic nuclei, hypertrophy, cloudy swelling of cells, lipid accumulation and fibrotic lesions. In the renal tissue, Triazophos caused thickening of Bowman's capsule, hyaline droplets degeneration, irregular renal corpuscle, congestion, cellular swelling, degeneration of tubular epithelium, necrosis, shrunken glomerulus, vacuolated glomerulus, hypertrophy, exudate and edema. IBRv2 analysis suggested that tissue biomarkers are highly sensitive to Triazophos toxicity and prolonged exposure could cause serious health effects like acute toxicity in fish. Triazophos could cause multiorgan toxicity at studied concentrations.
Collapse
Affiliation(s)
- Mathan Ramesh
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Bin Li
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, People's Republic of China.
| |
Collapse
|
2
|
Tripathi A, Gayen T, Maitra P, Kumari U, Mittal S, Mittal AK. Assessment of triclosan induced histopathological and biochemical alterations, and molecular docking simulation analysis of acetylcholinesterase enzyme in the gills of fish, Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41069-41083. [PMID: 38842779 DOI: 10.1007/s11356-024-33840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS), an antimicrobial additive in various personal and health care products, has been widely detected in aquatic environment around the world. The present study investigated the impacts of TCS in the gills of the fish, Cyprinus carpio employing histopathological, biochemical, molecular docking and simulation analysis. The 96 h LC50 value of TCS in C. carpio was found to be 0.968 mg/L. Fish were exposed to 1/1000th (1 µg/L), 1/100th (10 µg/L), and 1/10th (100 µg/L) of 96 h LC50 value for a period of 28 days. The histopathological alterations observed in the gills were hypertrophy, hyperplasia, edematous swellings, and fusion of secondary lamellae in TCS exposed groups. The severity of these alterations increased with both the concentration as well as the duration of exposure. The present study revealed that the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and reduced glutathione content decreased significantly (p < 0.05) in both concentration and duration dependent manner. However, a significant (p < 0.05) increase in the activity of the metabolic enzymes such as acid phosphatase and alkaline phosphatase was observed in all three exposure concentrations of TCS from 7 to 28 days. The activity of acetylcholinesterase declined significantly (p < 0.05) from 7 to 28 days whereas the content of acetylcholine increased significantly at the end of 28 day. The experimental results were further confirmed by molecular docking and simulation analysis that showed strong binding of TCS with acetylcholinesterase enzyme. The study revealed that long-term exposure to sublethal concentrations of TCS can lead to severe physiological and histopathological alterations in the fish.
Collapse
Affiliation(s)
- Anchal Tripathi
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Tuhina Gayen
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Priyasha Maitra
- Bioinformatics Programme, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Usha Kumari
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India.
| | - Swati Mittal
- Skin Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Ajay Kumar Mittal
- Department of Zoology, Banaras Hindu University, 9, Mani Nagar, Kandawa, Varanasi, 221106, India
| |
Collapse
|
3
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
4
|
Masanabo N, Orimolade B, Idris AO, Nkambule TTI, Mamba BB, Feleni U. Advances in polymer-based detection of environmental ibuprofen in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14062-14090. [PMID: 36567393 DOI: 10.1007/s11356-022-24858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Globally, ibuprofen is the third most consumed drug and its presence in the environment is a concern because little is known about its adverse effects on humans and aquatic life. Environmentalists have made monitoring and the detection of ibuprofen in biological and environmental matrices a priority. For the detection and monitoring of ibuprofen, sensors and biosensors have provided rapid analysis time, sensitivity, high-throughput screening, and real-time analysis. Researchers are increasingly seeking eco-friendly technology, and this has led to an interest in developing biodegradable, bioavailable, and non-toxic sensors, or biosensors. The integration of polymers into sensor systems has proven to significantly improve sensitivity, selectivity, and stability and minimize sample preparation using bioavailable and biodegradable polymers. This review provides a general overview of perspectives and trends of polymer-based sensors and biosensors for the detection of ibuprofen compared to non-polymer-based sensors.
Collapse
Affiliation(s)
- Ntombenhle Masanabo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Benjamin Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Azeez O Idris
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Johannesburg, 1710, South Africa.
| |
Collapse
|
5
|
Hodkovicova N, Hollerova A, Blahova J, Mikula P, Crhanova M, Karasova D, Franc A, Pavlokova S, Mares J, Postulkova E, Tichy F, Marsalek P, Lanikova J, Faldyna M, Svobodova Z. Non-steroidal anti-inflammatory drugs caused an outbreak of inflammation and oxidative stress with changes in the gut microbiota in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157921. [PMID: 35952865 DOI: 10.1016/j.scitotenv.2022.157921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
One of the main contributors to pharmaceutical pollution of surface waters are non-steroidal anti-inflammatory drugs (NSAIDs) that contaminate the food chain and affect non-target water species. As there are not many studies focusing on toxic effects of NSAIDs on freshwater fish species and specially effects after dietary exposure, we selected rainbow trout (Oncorhynchus mykiss) as the ideal model to examine the impact of two NSAIDs - diclofenac (DCF) and ibuprofen (IBP). The aim of our study was to test toxicity of environmentally relevant concentrations of these drugs together with exposure doses of 100× higher, including their mixture; and to deepen knowledge about the mechanism of toxicity of these drugs. This study revealed kidneys as the most affected organ with hyalinosis, an increase in oxidative stress markers, and changes in gene expression of heat shock protein 70 to be signs of renal toxicity. Furthermore, hepatotoxicity was confirmed by histopathological analysis (i.e. dystrophy, congestion, and inflammatory cell increase), change in biochemical markers, increase in heat shock protein 70 mRNA, and by oxidative stress analysis. The gills were locally deformed and showed signs of inflammatory processes and necrotic areas. Given the increase in oxidative stress markers and heat shock protein 70 mRNA, severe impairment of oxygen transport may be one of the toxic pathways of NSAIDs. Regarding the microbiota, an overgrowth of Gram-positive species was detected; in particular, significant dysbiosis in the Fusobacteria/Firmicutes ratio was observed. In conclusion, the changes observed after dietary exposure to NSAIDs can influence the organism homeostasis, induce ROS production, potentiate inflammations, and cause gut dysbiosis. Even the environmentally relevant concentration of NSAIDs pose a risk to the aquatic ecosystem as it changed O. mykiss health parameters and we assume that the toxicity of NSAIDs manifests itself at the level of mitochondria and proteins.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic.
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - J Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - P Mikula
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Crhanova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - D Karasova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czech Republic
| | - A Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - S Pavlokova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - J Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - E Postulkova
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - F Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - P Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - J Lanikova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Brillas E. A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. CHEMOSPHERE 2022; 286:131849. [PMID: 34426267 DOI: 10.1016/j.chemosphere.2021.131849] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 05/20/2023]
Abstract
Ibuprofen (IBP) is one ubiquitous drug prescribed as anti-inflammatory, analgesic, and antipyretic. It has been detected in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water due to its continuous release to the environment, mainly from the excretion in the urine of animals and humans. IBP is a carcinogenic and non-steroidal endocrine disrupting drug with harmful effects over fungal, bacterial, algae, microorganisms, crustacean, and fish species, and can be potentially hazard for human health. Since conventional treatments remove inefficiently this drug, many advanced oxidation processes (AOPs) have been developed aiming their abatement from waters to avoid their harmful health problems. This paper presents an exhaustive and critical review on the application of AOPs to treat synthetic waters, natural waters, and real wastewaters polluted with IBP alone or mixed with other common drugs covering up to 2020. The characteristics and main results obtained for single, hybrid, and sequential treatments are described. Dielectric barrier or pulsed-corona discharges are detailed among the single processes. Hybrid processes such as photocatalysis (UV/H2O2, UV/chlorine, TiO2/UV), hybrid ozonation (O3/H2O2, electro-peroxone, catalytic ozonation), Fenton-based processes (photo-Fenton, electro-Fenton, photoelectro-Fenton), zero-valent iron, ultrasonic, peroxymonosulfate, and persulfate, are discussed. The effect of the kind of irradiation (UV, visible, solar) on photo-assisted processes is analyzed. Sequential processes with biological pre- or post-treatments using or not membranes for natural water and real wastewater remediation are described. Finally, 38 by-products detected during IBP removal by AOPs are reported, allowing envisaging three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
7
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|