1
|
Rossi L, Villabrille PI, Marino DJ, Rosso JA, Caregnato P. Degradation of carbamazepine in surface water: performance of Pd-modified TiO 2 and Ce-modified ZnO as photocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116078-116090. [PMID: 37906333 DOI: 10.1007/s11356-023-30531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Carbamazepine is a widely used antiepileptic drug to control and treat a variety of disorders that is frequently detected in surface water, and in municipal and urban wastewater. This recalcitrant pollutant could be removed by alternative advanced oxidation technology such as heterogeneous photocatalysis. Ce-modified ZnO and Pd-modified TiO2 were synthesized by a microwave-assisted sol-gel method. According to the characterizations (Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy), a mixture of oxides was determined in both materials: CeO2/ZnO and PdO/TiO2. Photocatalytic degradation of carbamazepine in pure water under visible light (3 h) was assayed. The degradation percentage obtained with each catalyst was 80%, 53%, 20%, and 9% for ZnO, Ce-modified ZnO, TiO2, and Pd-modified TiO2, respectively. The leaching of Zn as a possible source of water contamination was tested, finding the lowest value for Ce-modified ZnO by adjusting the initial pH up to neutrality. Later, an environmentally relevant concentration of carbamazepine (228 µg L-1) was assayed, using local surface water (pH = 8.3). Despite the presence of other compounds in the real water matrix, after 5 h of photocatalysis, a 56% of degradation of the pharmaceutical and low leaching of Zn were achieved. The use of Ce-modified ZnO activated by visible light is a promising strategy for the abatement of pharmaceutical active compounds.
Collapse
Affiliation(s)
- Lucía Rossi
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, CICPBA, La Plata, Argentina
| | - Paula I Villabrille
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CINDECA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, CICPBA, La Plata, Argentina
| | - Damián J Marino
- Centro de Investigaciones del Medio Ambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Janina A Rosso
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, C.C. 16, Suc. 4, 1900, La Plata, Argentina
| | - Paula Caregnato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, C.C. 16, Suc. 4, 1900, La Plata, Argentina.
| |
Collapse
|
2
|
Rajan MS, John A, Yoon M, Thomas J. Zeolite Y-supported carbon-doped TiO 2 nanocomposites: Efficient solar photocatalysts for the purification of medicinal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60638-60653. [PMID: 37036645 DOI: 10.1007/s11356-023-26768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
The existence of antibiotics in aquatic streams destroys water quality and thereby poses serious ecological hitches. Photocatalysis involving nanosemiconductors is an environmentally benign technique for the mineralization of antibiotics. Herein, we prepared a new visible light-sensitive photocatalyst, zeolite Y-supported carbon-doped TiO2 nanocomposite (zeolite Y-c-TiO2), for the elimination of cefazolin antibiotic in wastewater systems. The structural and optical properties of the synthesized nanocomposites were investigated by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller surface area analysis (BET) as well as diffuse reflectance spectroscopy (UV-DRS) and photoluminescence spectroscopy (PL). The UV-Vis absorbance spectrum of zeolite Y-c-TiO2 exhibited a red shift towards longer wavelength with an increase in visible light absorption as compared to pure TiO2 nanoparticles and zeolite Y-supported TiO2 nanocomposites (zeolite Y-TiO2). Accordingly, the photocatalytic action of the zeolite Y-c-TiO2 for the degradation of methylene blue was evaluated under solar simulator, and it turned out to be highly efficient (100%) mineralization as compared to TiO2-nanoparticles (42%) and zeolite Y-TiO2 (62%) after 70 min irradiation for a 50mg L-1 methylene blue solution. Radical scavenging experiments revealed the involvement of hydroxyl radicals, superoxide radicals, and photogenerated holes in the degradation process. Consequently, zeolite Y-c-TiO2 was applied for the photocatalytic degradation of the cefazolin antibiotic in water, and complete degradation of cefazolin (50 mg L-1) was observed within 6 h of solar light irradiation on zeolite Y-c-TiO2. The degradation pathway of cefazolin was proposed by considering various intermediates detected via LC-MS analysis. The study points to the significant potential of zeolite Y-c-TiO2 photocatalyst for the purification of medicinal wastewater under sunlight.
Collapse
Affiliation(s)
- Mekha Susan Rajan
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India
| | - Anju John
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India
| | - Minjoong Yoon
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jesty Thomas
- Research Department of Chemistry, Kuriakose Elias College, Mannanam, Kottayam, Kerala, 686561, India.
| |
Collapse
|
3
|
Palladium-modified TiO 2 films in a photocatalytic microreactor: evaluation of radiation absorption properties and pollutant degradation efficiency. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:47-58. [PMID: 36112308 DOI: 10.1007/s43630-022-00296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
Pure (TiO2) and 0.1 nominal atomic percent of palladium-modified TiO2 (Pd-TiO2) films were synthesized via a sol-gel method and compared through their physicochemical properties and photocatalytic activity in the degradation of an emerging contaminant, 17-α-ethinylestradiol (EE2). The activity of the films was studied using a continuous flow, planar microreactor under simulated sunlight. Catalysts characterization included X-ray diffraction, UV-Visible diffuse reflectance and transmittance spectroscopy, atomic force microscopy, transmission electron microscopy, Raman spectroscopy, N2 physisorption analysis, and X-ray photoelectron spectroscopy. The modification of TiO2 with palladium confined the size of anatase phase crystallites, increased the specific surface area and improved radiation absorption. PdO domains on TiO2 were observed. In all the tested conditions, higher conversion of EE2 was achieved with the Pd-TiO2 film compared with the TiO2 film, presenting an 80% increase in the reaction rate. The performance of the catalytic films was also assessed by the calculation of two efficiency parameters: radiation absorption efficiency and quantum efficiency of reaction. The Pd-TiO2 film showed a notable enhancement of the absorption of the incident radiation and a more efficient utilization of the absorbed photons to degrade the target pollutant.
Collapse
|
4
|
Zhang C, Wang L, Huang X, Bai L, Yu Q, Jiang B, Zheng C, Cao J. Rational construction of Co-promoted 1T-MoS 2 nanoflowers towards high-efficiency 4-nitrophenol reduction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11811-11822. [PMID: 36098912 DOI: 10.1007/s11356-022-22974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Developing efficient and cost-effective non-noble metal catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is of great importance. Herein, Co-promoted 1T-MoS2 nanoflowers were synthesized via a one-step hydrothermal method. The influence of Co content on the structure and catalytic performance of 1T-MoS2 was studied in detail. It was found that Co doping not only enhanced the electronic conductivity but also increased the hydrogen adsorption ability of 1T-MoS2. Meanwhile, the highest activity was achieved due to the synergy effect of Co-Mo-S and CoS2 active phase. In the catalytic reduction of 4-NP, the reaction rate constant of Co/1T-MoS2-0.3 was as high as 0.908 min-1 and the catalyst exhibited excellent stability after recycling five times. The present work provides new insights for the rational design of highly efficient metal-doped MoS2 catalysts towards 4-NP reduction in wastewater.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Li Wang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Xi Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Liang Bai
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Qiyuan Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Bin Jiang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Chenlu Zheng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Jing Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| |
Collapse
|
5
|
Rossi L, Villabrille P, Pastrana-Martínez L, Caregnato P, Rosso J. Photocatalytic performance of palladium and carbon modified TiO2 using solar radiation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Li P, Han X, Chen D, Sai Q, Qi H. Controllability of β-Ga 2O 3 single crystal conductivity by V doping. CrystEngComm 2022. [DOI: 10.1039/d2ce00418f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strategy for realizing the tunability of the effective carrier concentration of β-Ga2O3 single crystals using V as a dopant.
Collapse
Affiliation(s)
- Pengkun Li
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueli Han
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duanyang Chen
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qinglin Sai
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongji Qi
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China
| |
Collapse
|