1
|
Kunz Cechinel A, Soares CE, Pfleger SG, De Oliveira LLGA, Américo de Andrade E, Damo Bertoli C, De Rolt CR, De Pieri ER, Plentz PDM, Röning J. Mobile Robot + IoT: Project of Sustainable Technology for Sanitizing Broiler Poultry Litter. SENSORS (BASEL, SWITZERLAND) 2024; 24:3049. [PMID: 38793903 PMCID: PMC11125414 DOI: 10.3390/s24103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
The traditional aviary decontamination process involves farmers applying pesticides to the aviary's ground. These agricultural defenses are easily dispersed in the air, making the farmers susceptible to chronic diseases related to recurrent exposure. Industry 5.0 raises new pillars of research and innovation in transitioning to more sustainable, human-centric, and resilient companies. Based on these concepts, this paper presents a new aviary decontamination process that uses IoT and a robotic platform coupled with ozonizer (O3) and ultraviolet light (UVL). These clean technologies can successfully decontaminate poultry farms against pathogenic microorganisms, insects, and mites. Also, they can degrade toxic compounds used to control living organisms. This new decontamination process uses physicochemical information from the poultry litter through sensors installed in the environment, which allows accurate and safe disinfection. Different experimental tests were conducted to construct the system. First, tests related to measuring soil moisture, temperature, and pH were carried out, establishing the range of use and the confidence interval of the measurements. The robot's navigation uses a back-and-forth motion that parallels the aviary's longest side because it reduces the number of turns, reducing energy consumption. This task becomes more accessible because of the aviaries' standardized geometry. Furthermore, the prototype was tested in a real aviary to confirm the innovation, safety, and effectiveness of the proposal. Tests have shown that the UV + ozone combination is sufficient to disinfect this environment.
Collapse
Affiliation(s)
- Alan Kunz Cechinel
- Graduate Program in Automation and System Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Carlos Eduardo Soares
- Graduate Program in Food Sciences, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil;
| | - Sergio Genilson Pfleger
- Graduate Program in Computer Science, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | | | | | - Claudia Damo Bertoli
- Graduate Program in Plant and Animal Science, Catarinense Federal Institute, Camboriú 88340-055, SC, Brazil;
| | - Carlos Roberto De Rolt
- Graduate Program in Business Management and Socioeconomic Science—ESAG, State University of Santa Catarina—UDESC, Florianópolis 88035-001, SC, Brazil;
| | - Edson Roberto De Pieri
- Graduate Program in Automation and System Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Patricia Della Méa Plentz
- Graduate Program in Computer Science, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Juha Röning
- Biomimetics and Intelligent Systems Group, University of Oulu, P.O. Box 4500, 90014 Oulu, Finland;
| |
Collapse
|
2
|
Jiang K, Wu Q, Chen Y, Fan D, Chu F. A high-performance bio-based adhesive comprising soybean meal, silk fibroin, and tannic acid inspired by marine organisms. Int J Biol Macromol 2023:125095. [PMID: 37245746 DOI: 10.1016/j.ijbiomac.2023.125095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
The sustainable development of high-performance bio-based adhesives is both important and challenging for the wood industry. Herein, inspired by the hydrophobic property of barnacle cement protein and the adhesive property of mussel adhesion protein, a water-resistant bio-based adhesive was developed from silk fibroin (SF) rich in hydrophobic β-sheet structures and tannic acid (TA) rich in catechol groups as reinforcing components and soybean meal molecules rich in reactive groups as substrates. SF and soybean meal molecules formed a water-resistant tough structure through a multiple cross-linking network including covalent bonds, hydrogen bonds, and dynamic borate ester bonds constructed by TA and borax. The wet bond strength for the developed adhesive achieved 1.20 MPa, exhibiting its excellent application capabilities in humid environments. The storage period of the developed adhesive (72 h) was 3 times that of pure soybean meal adhesive owing to the enhanced mold resistance of the adhesive by TA. Furthermore, the developed adhesive demonstrated excellent biodegradability (45.45 % weight loss in 30 days) and flame retardancy (limiting oxygen index of 30.1 %). Overall, this environmental and efficient biomimetic strategy provides a promising and feasible route to develop high-performance bio-based adhesives.
Collapse
Affiliation(s)
- Ke Jiang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Qiao Wu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dongbin Fan
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Fuxiang Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
3
|
Li H, Wang Y, Xie W, Tang Y, Yang F, Gong C, Wang C, Li X, Li C. Preparation and Characterization of Soybean Protein Adhesives Modified with an Environmental-Friendly Tannin-Based Resin. Polymers (Basel) 2023; 15:polym15102289. [PMID: 37242862 DOI: 10.3390/polym15102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Soybean protein-based adhesives are limited in their application due to their poor wet bonding strength and poor water resistance. Herein, we prepared a novel, environmentally friendly soybean protein-based adhesive by adding tannin-based resin (TR) to improve the performance of water resistance and wet bonding strength. The active sites of TR reacted with the soybean protein and its functional groups and formed strong cross-linked network structures, which improved the cross-link density of the adhesives and then improved the water resistance. The residual rate increased to 81.06% when 20 wt%TR was added, and the water resistance bonding strength reached 1.07 MPa, which fully met the Chinese national requirements for plywood (Class II, ≥0.7 MPa). SEM observations were performed on the fracture surfaces of all modified SPI adhesives after curing. The modified adhesive has a denser and smooth cross-section. Based on the TG and DTG plots, the thermal stability performance of the TR-modified SPI adhesive was improved when TR was added. The total weight loss of the adhesive decreased from 65.13% to 58.87%. This study provides a method for preparing low-cost and high-performance, environmentally friendly adhesives.
Collapse
Affiliation(s)
- Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenwen Xie
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yang Tang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Fan Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Chenrui Gong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaona Li
- College of Material Science and Engineering, Nanjing Forestry University, Longpan Road 159, Xuanwu District, Nanjing 210037, China
| | - Cheng Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Ladakis D, Stylianou E, Ioannidou SM, Koutinas A, Pateraki C. Biorefinery development, techno-economic evaluation and environmental impact analysis for the conversion of the organic fraction of municipal solid waste into succinic acid and value-added fractions. BIORESOURCE TECHNOLOGY 2022; 354:127172. [PMID: 35447331 DOI: 10.1016/j.biortech.2022.127172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) was used for biorefinery development within a circular bioeconomy context towards extraction of lipids/fats and proteins with 100% and 68% recovery yields, respectively, as well as succinic acid (SA) production. A nutrient-rich hydrolysate (89.1 g/L sugars) produced using crude enzymes derived via solid state fermentation of Aspergillus awamori, was employed in Actinobacillus succinogenes fermentation leading to 31.7 gSA/L with 0.68 g/g yield and 0.67 g/L/h productivity. The SA minimum selling price ($1.13-2.39/kgSA) considering 60,000 tSA/year production varied depending on co-product market prices and OFMSW management fees. The biorefinery using 1000 kg OFMSW contributes 35% lower CO2 emissions than conventional processes for the production of 105 kg vegetable oil, 87 kg vegetable protein and 206.4 kg fossil-SA considering also the CO2 emissions due to OFMSW landfilling. The proposed OFMSW biorefinery leads to cost-competitive SA production with lower CO2 emissions for OFMSW treatment.
Collapse
Affiliation(s)
- Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Eleni Stylianou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Sofia-Maria Ioannidou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
5
|
Modelling and Environmental Profile Associated with the Valorization of Wheat Straw as Carbon Source in the Biotechnological Production of Manganese Peroxidase. SUSTAINABILITY 2022. [DOI: 10.3390/su14084842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interest in the development of biorefineries and biotechnological processes based on renewable resources has multiplied in recent years. This driving force is the result of the availability of lignocellulosic biomass and the range of applications that arise from its use and valorization. The approach of second-generation sugars from lignocellulosic biomass opens up the possibility of producing biotechnological products such as enzymes as a feasible alternative in the framework of biorefineries. It is in this context that this manuscript is framed, focusing on the modelling of a large-scale fermentative biotechnological process to produce the enzyme manganese peroxidase (MnP) by the fungus Irpex lacteus using wheat straw as a carbon source. The production scheme is based on the sequence of four stages: pretreatment of wheat straw, seed fermenters, enzyme production and downstream processes. For its environmental assessment, the Life Cycle Assessment methodology, which allows the identification and quantification of environmental impacts associated with the process, was utilized. As the main finding, the stages of the process with the highest environmental burdens are those of pretreatment and fermentation, mainly due to energy requirements. With the aim of proposing improvement scenarios, sensitivity analyses were developed around the identified hotspots. An improvement in the efficiency of steam consumption leads to a reduction of environmental damage of up to 30%.
Collapse
|
6
|
Li Y, Cai L, Chen H, Liu Z, Zhang X, Li J, Shi SQ, Li J, Gao Q. Preparation of a high bonding performance soybean protein-based adhesive with low crosslinker addition via microwave chemistry. Int J Biol Macromol 2022; 208:45-55. [PMID: 35301001 DOI: 10.1016/j.ijbiomac.2022.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022]
Abstract
Human health and environmental protection demand wood-based panel industry for innovative soy-based adhesives with high production efficiency, straightforward synthesis processes, non-toxicity, and high bonding performance. A simple and efficient microwave pretreatment process and low addition of bio-derived crosslinking agent was used in this study to prepare a non-toxic and high-bonding performance soybean protein-based adhesive. After 4 min of microwave pretreatment time, the complex quaternary structure of soybean protein molecule unfolds, the soybean protein disperses evenly and stably, and active groups of soybean protein molecules are exposed. After adding 3.85% crosslinking agent, the moisture absorption rate of the soybean protein-based adhesive decreases by 41.77%, the residual rate increases by 3.68%, and the wet shear strength of the resultant plywood increases to 1.12 MPa, which satisfies requirement of interior use plywood. Compared with previously reported soy-based adhesives, this adhesive is dependent on fewer chemical reagents, but has good bonding performance. The 204.41% of relative cell viability indicates the resultant adhesive was non-toxic. The proposed high-efficiency, high-performance, non-toxic biomass adhesive has great prospects for the industrial application.
Collapse
Affiliation(s)
- Yue Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Li Cai
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Hui Chen
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Zheng Liu
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Xin Zhang
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Jingchao Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Sheldon Q Shi
- College of Engineering Department of Mechanical and Energy Engineering, University of North Texas, 3940 North Elm street, Suite F101P, Denton, TX 76207-7102, USA
| | - Jianzhang Li
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Qiang Gao
- Beijing Key Laboratory of Wood Science and Engineering & MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China..
| |
Collapse
|
7
|
Arias A, Feijoo G, Moreira MT. Evaluation of Starch as an Environmental-Friendly Bioresource for the Development of Wood Bioadhesives. Molecules 2021; 26:4526. [PMID: 34361679 PMCID: PMC8347426 DOI: 10.3390/molecules26154526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/05/2022] Open
Abstract
The environment is a very complex and fragile system in which multiple factors of different nature play an important role. Pollution, together with resource consumption, is one of the main causes of the environmental problems currently affecting the planet. In the search for alternative production processes, the use of renewable resources seeks a way to satisfy the demands of resource consumption based on the premises of lower environment impact and less damage to human health. In the wood sector, the panel manufacturing process is based on the use of formaldehyde-based resins. However, their poor moisture resistance leads to hydrolysis of amino-methylene bonds, which induces formaldehyde emissions throughout the lifetime of the wood panel. This manuscript investigates the environmental profile associated with different wood bioadhesives based on starch functionalization as a renewable alternative to formaldehyde resins. Considering that this is a process under development, the conceptual design of the full-scale process will be addressed by process modeling and the environmental profile will be assessed using life cycle assessment methodology. A comparative study with synthetic resins will provide useful information for modify their development to become real alternatives in the wood-based panel industry. The results obtained show the enormous potential of starch bioadhesives, as their environmental impact values are lower compared to those based on petrochemicals. However, certain improvements in the energy process requirements and in the chemical agents used could be developed to provide even better results.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (G.F.); (M.T.M.)
| | | | | |
Collapse
|