1
|
Zhang S, Zhou L, Tang K, Ren D, Zhang X. Study on the enhancement of citric acid chemical leaching of contaminated soil by modified nano zero-valent iron. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:224. [PMID: 38849581 DOI: 10.1007/s10653-024-02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 06/09/2024]
Abstract
This study aimed to evaluate the effect of modified nanoscale zero-valent iron (SAS-nZVI) on chemical leaching of lead and cadmium composite contaminated soil by citric acid (CA). The synthesized SAS-nZVI was used as a leaching aid to improve the removal rate of soil heavy metals (HMs) by CA chemical leaching. The effects of various factors such as SAS-nZVI dosage, elution temperature and elution time were studied. At the same time, the effect of chemical leaching on the basic physical and chemical properties of soil and the morphology of HMs was evaluated. The results show that when the SAS-nZVI dosage is 2.0 g/L, the leaching temperature is 25 °C, and the leaching time is 720 min, the maximum removal rates of Pb and Cd in the soil are 77.64% and 97.15% respectively. The experimental results were evaluated using elution and desorption kinetic models (Elovich model, double constant model, diffusion model). The elution and desorption process of Pb and Cd in soil by SAS-nZVI-CA fitted well with the double-constant model, indicating that the desorption kinetic process of Pb and Cd is a heterogeneous diffusion process, and the elution process is controlled by diffusion factors. After leaching with SAS-nZVI-CA, the physical and chemical properties of the soil changed little, the mobility and toxicity of HMs in the soil were reduced, and the HMs content in the leaching waste liquid was reduced. It can be concluded that SAS-nZVI enhances the efficiency of CA in extracting Pb and Cd from soil, minimizes soil damage resulting from chemical leaching technology, and alleviates the challenges associated with treating leaching waste liquid.
Collapse
Affiliation(s)
- Shuqin Zhang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China.
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Linyuan Zhou
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Kan Tang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Dajun Ren
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaoqing Zhang
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, China
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
2
|
Zulkernain NH, Uvarajan T, Ng CC. Roles and significance of chelating agents for potentially toxic elements (PTEs) phytoremediation in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117926. [PMID: 37163837 DOI: 10.1016/j.jenvman.2023.117926] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
Collapse
Affiliation(s)
- Nur Hanis Zulkernain
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia; School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Turkeswari Uvarajan
- School of Postgraduate Studies, Research and Internationalisation, Faculty of Integrated Life Sciences, Quest International University, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences, Xiamen University, Malaysia (XMUM), Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Song H, Zhou J, He S, Ma Q, Peng L, Yin M, Lin H, Zeng Q. Efficient Removal of Heavy Metals from Contaminated Sunflower Straw by an Acid-Assisted Hydrothermal Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1311. [PMID: 36674067 PMCID: PMC9858727 DOI: 10.3390/ijerph20021311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The removal of heavy metals is crucial to the utilization of contaminated biomass resources. In this study, we report an efficient process of hydrothermal conversion (HTC) of sunflower straw (Helianthus annuus L.) to remove heavy metals. The effect of different HTC temperatures and concentrations of HCl additives on heavy metal removal efficiency was investigated. The results revealed that increasing the temperature or concentration of HCl promoted the transfer of heavy metals from hydrochar to liquid products during HTC. The heavy metals removed to the liquid products included up to 99% of Zn and Cd, 94% of Cu, and 87% of Pb after hydrothermal conversion with a temperature of 200 °C and HCl 2%. The species of heavy metals in hydrochars converted from unstable to stable with an increase in temperature from 160 °C to 280 °C. The stable fractions of heavy metals in the acidic condition decreased as the acid concentration increased. This aligns well with the high transfer efficiency of heavy metals from the solid phase to the liquid phase under acidic conditions. The FTIR indicated that the carboxy and hydroxy groups decreased significantly as the temperature increased and the concentration of HCl increased, which promoted the degradation of sunflower straw. A scan electron microscope showed that the deepening of the destruction of the initial microstructure promotes the transfer of heavy metals from hydrochars to liquid phase products. This acid-assisted hydrothermal process is an efficient method to treat biomass containing heavy metals.
Collapse
Affiliation(s)
- Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
- Department of Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Jun Zhou
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Shilong He
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Ma
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Miaogen Yin
- Department of Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Hui Lin
- Department of Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Qingru Zeng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Wang P, Cao Y, Yang B, Luo H, Liang T, Yu J, Ding A, Wang L, Li H, Cao H, Ma F, Gu Q, Li F. Leaching Characteristics of Heavy Metals in the Baghouse Filter Dust from Direct-Fired Thermal Desorption of Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16504. [PMID: 36554385 PMCID: PMC9778458 DOI: 10.3390/ijerph192416504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
After thermal desorption, the total amount of heavy metals (HMs) is enriched in baghouse filter dust. To further understand the related environmental impact, the leaching characteristics under various conditions must be explored. Therefore, this study aimed to examine the leaching characteristics of seven HMs in the dust generated in the direct-fired thermal desorption process and to compare the differences in heavy metal leaching characteristics in the soil before and after thermal desorption. The leaching characteristics and bioaccessibility of seven HMs-arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)-were analyzed in dust and in soil before and after thermal desorption. The activity of HMs in dust was strong. Therefore, environmental effects and effects on human health should be considered in the treatment of soil and dust after thermal desorption.
Collapse
Affiliation(s)
- Panpan Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunzhe Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Bin Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Huilong Luo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tian Liang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingjing Yu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lina Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Huiying Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Hanlin Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fasheng Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|