1
|
Lin X, Chen C, Chen J, Zhu C, Zhang J, Su R, Chen S, Weng S, Chang X, Lin S, Chen Y, Li J, Lin L, Zhou J, Guo Z, Yu G, Shao W, Hu H, Wu S, Zhang Q, Li H, Zheng F. Long Noncoding RNA NR_030777 Alleviates Cobalt Nanoparticles-Induced Neurodegenerative Damage by Promoting Autophagosome-Lysosome Fusion. ACS NANO 2024; 18:24872-24897. [PMID: 39197041 PMCID: PMC11394346 DOI: 10.1021/acsnano.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
Collapse
Affiliation(s)
- Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinxiang Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Canlin Zhu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiajun Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ruiqi Su
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shujia Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shucan Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, Kentucky 40292, United States
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
2
|
Ma X, Lu C, Gao J, Cao J, Wan Y, Fang H. Sustainability of new energy vehicles from a battery recycling perspective: A bibliometric analysis. Heliyon 2024; 10:e33800. [PMID: 39027595 PMCID: PMC11255506 DOI: 10.1016/j.heliyon.2024.e33800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
In recent years, new energy vehicles (NEVs) have taken the world by storm. A large number of NEV batteries have been scrapped, and research on NEV battery recycling is important for promoting the sustainable development of NEVs. Battery recycling is an important aspect of the sustainable development of NEVs. In this study, we conducted an in-depth analysis of the current status of research on NEV battery recycling from a new perspective using bibliometric methods and visualization software. This study shows that research targeting the recycling of NEV batteries is growing rapidly, and collaborative networks exist among researchers from different countries, institutions, and fields. The focus of research has shifted from lead-acid batteries to lithium batteries, and the supply chain and circular economy related to NEV battery recycling is an emerging research hotspot. Based on our analysis, we propose that the government should establish policies to improve the recycling networks at the collection stage and provide subsidies to attract consumers. Enterprises should develop low-cobalt and cobalt-free technologies, utilize green solvents, and develop new battery swap modes. The establishment of an information platform is conducive to the further development of collaborative networks.
Collapse
Affiliation(s)
- Xiuyan Ma
- School of Management, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Chunxia Lu
- School of Management, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jiawei Gao
- Business School, Hitotsubashi University, Tokyo, 1860004, Japan
| | - Jian Cao
- School of Management, Zhejiang University of Technology, Hangzhou, 310023, China
- Center for Global & Regional Environmental Research, The University of Iowa, Iowa City, 52242, United States
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, 310023, China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, 310023, China
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
3
|
Li Y, Sun M, Cao Y, Yu K, Fan Z, Cao Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. CHEMSUSCHEM 2024; 17:e202301953. [PMID: 38409620 DOI: 10.1002/cssc.202301953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The Lithium-ion battery (LIB) is one of the main energy storage equipment. Its cathode material contains Li, Co, and other valuable metals. Therefore, recycling spent LIBs can reduce environmental pollution and resource waste, which is significant for sustainable development. However, traditional metallurgical methods are not environmentally friendly, with high cost and environmental toxicity. Recently, the concept of green chemistry gives rise to environmental and efficient recycling technology, which promotes the transition of recycling solvents from organic solvents to green solvents represented by deep eutectic solvents (DESs). DESs are considered as ideal alternative solvents in extraction processes, attracting great attention due to their low cost, low toxicity, good biodegradability, and high extraction capacity. It is very important to develop the DESs system for LIBs recycling for sustainable development of energy and green economic development of recycling technology. In this work, the applications and research progress of DESs in LIBs recovery are reviewed, and the physicochemical properties such as viscosity, toxicity and regulatory properties are summarized and discussed. In particular, the toxicity data of DESs are collected and analyzed. Finally, the guidance and prospects for future research are put forward, aiming to explore more suitable DESs for recycling valuable metals in batteries.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Mingjie Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yanbo Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Zixuan Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
4
|
Li A, Li B, Lu B, Yang D, Hou S, Song X. Generation estimation and material flow analysis of retired mobile phones in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75626-75635. [PMID: 35657548 DOI: 10.1007/s11356-022-21153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The generation estimation of retired mobile phones is launched with the sales and new method using the revised sales data and amount of the subscribers. Several assumptions have been made due to the insufficient sources of the data. The sales data of legal mobile phones are calculated with the authoritative and continuous official data. The sales data of smuggled and counterfeit mobile phones in China are also estimated based on the behavior data collected from the questionnaires. The results of generation estimation show that there are 636.52 million mobile phones retired in 2020, compared with 14.44 million in 1999 and several negative values in 2000, 2001, and 2008. The annual total mass of retired mobile phones in China escalated with the contributions of both the increasing generation amount and constant mass of the single unit. There are 50,921.60 ton of mobile phones retired in 2020 compared with 1155.20 ton in 1999, while the peak is 58,131.20 ton in 2019. There are 26,066.80 ton of retired mobile phones are stockpiled in 2020, while 16,152.40 ton and 8702.40 ton of retired mobile phones are reused as a whole unit and recycled, respectively. In the retired mobile phones that are recycled, 4600.50 ton material is recovered and 1216.50 ton components are reused, while 2885.40 ton residues need final disposal. The amount and dynamic characteristics of metals in the retired mobile phones are also calculated. Based on the results, several policy implications are made to improve sustainable management system of retired mobile phones in China.
Collapse
Affiliation(s)
- Ang Li
- Department of Resources and Environmental Engineering, Xingtai Polytechnic College, Xingtai, 054000, People's Republic of China
| | - Bo Li
- Department of Resources and Environmental Engineering, Xingtai Polytechnic College, Xingtai, 054000, People's Republic of China.
| | - Bin Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Dong Yang
- Institute of Science and Technology for Development of Shandong, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, People's Republic of China
| | - Suxia Hou
- Department of Resources and Environmental Engineering, Xingtai Polytechnic College, Xingtai, 054000, People's Republic of China
| | - Xiaolong Song
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
- Shanghai Collaborative Innovation Center for WEEE Recycling, Shanghai, 201209, People's Republic of China
| |
Collapse
|
6
|
A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14063371] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
New energy vehicles (NEVs), especially electric vehicles (EVs), address the important task of reducing the greenhouse effect. It is particularly important to measure the environmental efficiency of new energy vehicles, and the life cycle analysis (LCA) model provides a comprehensive evaluation method of environmental efficiency. To provide researchers with knowledge regarding the research trends of LCA in NEVs, a total of 282 related studies were counted from the Web of Science database and analyzed regarding their research contents, research preferences, and research trends. The conclusion drawn from this research is that the stages of energy resource extraction and collection, carrier production and energy transportation, maintenance, and replacement are not considered to be research links. The stages of material, equipment, and car transportation and operation equipment settling, and forms of use need to be considered in future research. Hydrogen fuel cell electric vehicles (HFCEVs), vehicle type classification, the water footprint, battery recovery and reuse, and battery aging are the focus of further research, and comprehensive evaluation combined with more evaluation methods is the direction needed for the optimization of LCA. According to the results of this study regarding EV and hybrid power vehicles (including plug-in hybrid electric vehicles (PHEV), fuel-cell electric vehicles (FCEV), hybrid electric vehicles (HEV), and extended range electric vehicles (EREV)), well-to-wheel (WTW) average carbon dioxide (CO2) emissions have been less than those in the same period of gasoline internal combustion engine vehicles (GICEV). However, EV and hybrid electric vehicle production CO2 emissions have been greater than those during the same period of GICEV and the total CO2 emissions of EV have been less than during the same period of GICEV.
Collapse
|