1
|
Wang W, Jiang H, Tan Z, Yu L, Chen J, Xiao Q, Rong Q, Zhou C. Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium. Molecules 2025; 30:347. [PMID: 39860216 PMCID: PMC11767991 DOI: 10.3390/molecules30020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd2+ by modified biochar under different pH and dosages. A350 and C350 had pore changes, and B350 had a smoother surface. The polarity and Zeta potential of A350, B350, and C350 differed. B350 and C350's kinetic adsorption fit the pseudo second order model, A350's fit both the pseudo first and second order. Their isothermal adsorption fit Langmuir (B350, C350) and Freundlich (A350). Intraparticle diffusion was three-stage with single-layer chemical adsorption. The pH increase raised removal and adsorption of CK350, A350, B350, and C350. The dosage increase hiked removal but cut unit adsorption. A350 had the highest max adsorption (57.845 mg/g). All modifications enhanced Cd2+ adsorption, and the effect could be altered by adjusting pH and dosage.
Collapse
Affiliation(s)
- Wanjing Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiyan Jiang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zebin Tan
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Luyao Yu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jie Chen
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qingliang Xiao
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinlei Rong
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
| | - Chunhuo Zhou
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Xiao Y, Luan H, Lu S, Xing M, Guo C, Qian R, Xiao X. Toxic effects of atmospheric deposition in mining areas on wheat seedlings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:69. [PMID: 38342840 DOI: 10.1007/s10653-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Storage and transportation of coal, as well as operation of coal-fired power plants, produce amounts of metallic exhaust that may lead to different atmospheric environment in the overlapped areas of farmland and coal resource (OAFCR) environment. To investigate the effects of different atmospheric environment in the OAFCR region (north of Xuzhou) on wheat seedlings (AK-58), a box experiment was conducted and compared to an area far from the OAFCR (south of Xuzhou). The study revealed that (1) compared to the southern suburb of Xuzhou, the fresh and dry weight, activities of photosynthetic enzymes and POD of wheat seedlings in the OAFCR reduced obviously. (2) Significantly higher levels of Cr, Cd, Pb, Zn, and Cu were found in the shoots and roots of wheat seedlings in the OAFCR, with lower transfer factor for heavy metals (except Cd and As) in comparison to those in the southern suburb. And the bioconcentration factors of heavy metals (except As) in wheat seedlings in the OAFCR were significantly higher. (3) Nearly 90% of heavy metals (Pb, Cu, Cd, Zn, and Cr) absorbed by wheat were stored in cell walls and soluble fractions, with significantly higher contents of Cu and Cr in wheat seedlings' cell walls and higher contents of Pb, Zn, and Cd in soluble components found in the OAFCR. Our results showed that atmospheric deposition in the mining area has a certain toxic effect on wheat seedlings, and this study provides a theoretical basis for OAFCR crop toxicity management.
Collapse
Affiliation(s)
- Yu Xiao
- School of Environment and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Huijun Luan
- Geological Survey of Anhui Province (Anhui Institute of Geological Sciences), Hefei, 230001, Anhui, China
| | - Shougan Lu
- Jiangsu Founder Environmental Protection Group Co., Ltd, Xuzhou, 221132, Jiangsu, China
| | - Mingjie Xing
- Tianjin Huankeyuan Environmental Science and Technology Co., Ltd, Tianjin, 300457, China
| | - Chunying Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Ruoxi Qian
- Department of Mathematical and Computational Sciences, University of Toronto, Toronto, L5B 4P2, Canada
| | - Xin Xiao
- School of Environment and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, China.
- Observation and Research Station of Jiangsu Jiawang Resource Exhausted Mining Area Land Restoration and Ecological Succession, Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
4
|
Li Y, Liu M, Wang H, Li C, Zhang Y, Dong Z, Fu C, Ye Y, Wang F, Chen X, Wang Z. Effects of different phosphorus fertilizers on cadmium absorption and accumulation in rice under low-phosphorus and rich-cadmium soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11898-11911. [PMID: 38225492 DOI: 10.1007/s11356-024-31986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Rice is the main food crops with the higher capacity for cadmium (Cd) uptake, necessitating the urgent need for remediation measures to address Cd in paddy soil. Reasonable agronomic methods are convenient and favorable for fixing the issue. In this study, a pot experiment was employed to evaluate the effects of two foliar (NaH2PO4, SDP; KH2PO4, PDP) and two solid phosphate fertilizers (double-superphosphate, DSP; calcium-magnesium phosphate, CMP) on uptake and remobilization of Cd in rice plants under the low-P and rich-Cd soil. The results revealed that these four phosphorus fertilizer significantly down-regulated the relative expression of OsNRAMP5 involved in Cd absorption, while up-regulated OsPCS1 expression and increased distribution of Cd into the cell wall in roots. Furthermore, phosphorus fertilizer resulted in a significant decrease in the relative expression of OsLCT1 in stems and OsLCD in leaves, decreased the transfer factor of Cd from shoots to grains, and ulterior reduced the Cd accumulation in three protein components of globulin, albumin, and glutelin, making the average Cd concentration of brown rice decreased by 82.96%. These results comprehensively indicate that in situations with similar soil backgrounds, the recommended application of solid CMP and foliar PDP can alleviate the toxicity of Cd by reducing its absorption and remobilization.
Collapse
Affiliation(s)
- Yang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Mingsong Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Huicong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Chunhui Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ying Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhiyao Dong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Chuanlan Fu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Yuxiu Ye
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huai'an, 223003, China
| | - Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huai'an, 223003, China
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huai'an, 223003, China
| | - Zunxin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huai'an, 223003, China.
| |
Collapse
|
5
|
Guo Y, Yang Y, Li R, Liao X, Li Y. Distribution of cadmium and lead in soil-rice systems and their environmental driving factors at the island scale. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115530. [PMID: 37774543 DOI: 10.1016/j.ecoenv.2023.115530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Toxic elements, such as Cd and Pb are of primary concern for soil quality and food security owing to their high toxicity and potential for bioaccumulation. Knowledge of the spatial variability of Cd and Pb in soil-rice systems across the landscape and identification of their driving factors are prerequisites for developing appropriate management strategies to remediate or regulate these hazardous contaminants. Considering the role of rice (Oryza sativa) as a dietary staple in China, this study aimed to examine the distribution patterns and drivers of Cd and Pb in tropical soil-rice systems across Hainan Island. To achieve this goal, 229 pairs of representative paddy soil and rice samples combined with a set of environmental covariates at the island scale were systematically analyzed. Arithmetic mean values (AMs) of Cd and Pb in rice were 0.080 and 0.199 mg kg-1, and exceeded the standard limits by 27.1% and 22.7%, respectively. We found that the AMs of Cd and Pb concentrations in paddy soil were 0.294 and 43.0 mg kg-1. Additionally, Cd in 29.26% of soil samples and Pb in 11.35% of soil samples exceeded the risk screening value for toxic elements. The enrichment factor generally showed that soil Cd and Pb on Hainan Island were both moderately enriched. Results obtained from both Spearman's correlation and stepwise regression analyses suggest that the concentrations of soil Cd and Pb are significantly influenced by the soil Na and Fe concentrations. Specifically, an increment of 1 g kg-1 in soil Na caused a rise of soil Cd and Pb by 57.1 mg kg-1 and 34.4 mg kg-1, respectively, while an increase of 1 g kg-1 in soil Fe resulted in a rise by 25.0 mg kg-1 and 14.5 mg kg-1. Similarly for rice grains, an increment of 1 g kg-1 in soil Ca resulted in a rise of rice Pb by 30.8 mg kg-1, whereas an increase of 1 g kg-1 in soil Mg led to a decrease in rice Pb by 14.8 mg kg-1. However, no significant correlation between soil Se and rice Cd concentrations was found. Furthermore, the result of geographically weighted regression revealed that the impacts of soil Na, Ca, Fe, and Mg on rice Cd were more significant in the western region, whereas the effects of soil Na and Fe on rice Pb were stronger in the northeastern region. This study provides new insights for the identification of factors influencing the distribution and accumulation of Cd and Pb in tropical island agroecosystems.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruxia Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
6
|
Hussain S, Ahmed S, Akram W, Sardar R, Abbas M, Yasin NA. Selenium-Priming mediated growth and yield improvement of turnip under saline conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:710-726. [PMID: 37753953 DOI: 10.1080/15226514.2023.2261548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Salt toxicity is one of the foremost environmental stresses that declines nutrient uptake, photosynthetic activity and growth of plants resulting in a decrease in crop yield and quality. Seed priming has become an emergent strategy to alleviate abiotic stress and improve plant growth. During the current study, turnip seed priming with sodium selenite (Na2SeO3) was investigated for its ability to mitigate salt stress. Turnip (Brassica rapa L. var. Purple Top White Globe) seeds primed with 75, 100, and 125 μML-1 of Se were subjected to 200 mM salt stress under field conditions. Findings of the current field research demonstrated that salt toxicity declined seed germination, chlorophyll content, and gas exchange characteristics of B. rapa seedling. Whereas, Se-primed seeds showed higher germination rate and plant growth which may be attributed to the decreased level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased synthesis of proline (36%) and besides increased total chlorophyll (46%) in applied turnip plants. Higher expression levels of genes encoding antioxidative activities (CAT, POD, SO,D and APX) mitigated oxidative stress induced by the salt toxicity. Additionally, Se treatment decreased Na+ content and enhanced K+ content resulting in elevated K+/Na+ ratio in the treated plants. The in-silico assessment revealed the interactive superiority of Se with antioxidant enzymes including CAT, POD, SOD, and APX as compared to sodium chloride (NaCl). Computational study of enzymes-Se and enzymes-NaCl molecules also revealed the stress ameliorative potential of Se through the presence of more Ramachandran-favored regions (94%) and higher docking affinities of Se (-6.3). The in-silico studies through molecular docking of Na2SeO3, NaCl, and ROS synthesizing enzymes (receptors) including cytochrome P450 (CYP), lipoxygenase (LOX), and xanthine oxidase (XO), also confirmed the salt stress ameliorative potential of Se in B. rapa. The increased Ca, P, Mg, and Zn nutrients uptake nutrients uptake in 100 μML-1 Se primed seedlings helped to adjust the stomatal conductivity (35%) intercellular CO2 concentration (32%), and photosynthetic activity (41%) resulting in enhancement of the yield attributes. More number of seeds per plant (6%), increased turnip weight (115 gm) root length (17.24 cm), root diameter (12 cm) as well as turnip yield increased by (9%tons ha-1) were recorded for 100 μML-1 Se treatment under salinity stress. Findings of the current research judiciously advocate the potential of Se seed priming for salt stress alleviation and growth improvement in B. rapa.
Collapse
Affiliation(s)
- Saber Hussain
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
7
|
Chen P, Shaghaleh H, Hamoud YA, Wang J, Pei W, Yuan X, Liu J, Qiao C, Xia W, Wang J. Selenium-Containing Organic Fertilizer Application Affects Yield, Quality, and Distribution of Selenium in Wheat. Life (Basel) 2023; 13:1849. [PMID: 37763253 PMCID: PMC10532816 DOI: 10.3390/life13091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to investigate the effect on wheat yield of applying organic fertilizers (OF) with five different selenium (Se) concentrations. The mineral nutrients, cadmium (Cd) content, and the distribution of Se in wheat plants were also measured. The results showed that wheat yields reached a maximum of 9979.78 kg ha-1 in Mengcheng (MC) County and 8868.97 kg ha-1 in Dingyuan (DY) County, Anhui Province, China when the application amount of selenium-containing organic fertilizer (SOF) was up to 600 kg ha-1. Among the six mineral nutrients measured, only the calcium (Ca) content of the grains significantly increased with an increase in the application amount of SOF in the two regions under study. Cd content showed antagonistic effects with the Se content of wheat grains, and when the SOF was applied at 1200 kg ha-1, the Cd content of the grains was significantly reduced by 30.1% in MC and 67.3% in DY, compared with under the Se0 treatment. After application of SOF, the Se content of different parts of the wheat plant ranked root > grain > spike-stalk > glume > leaf > stem. In summary, SOF application at a suitable concentration could increase wheat yields and significantly promote the Ca content of the grains. Meanwhile, the addition of Se effectively inhibited the level of toxic Cd in the wheat grains.
Collapse
Affiliation(s)
- Peng Chen
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing 210098, China;
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China;
| | - Jing Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Wenxia Pei
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Xianfu Yuan
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Jianjian Liu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Cece Qiao
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Wenhui Xia
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu 233030, China; (P.C.); (J.W.); (W.P.); (X.Y.); (J.L.); (C.Q.); (W.X.)
| |
Collapse
|
8
|
Wang Z, Li Y, Liu M, Yang Y, Wang R, Chen S, Liu Z, Yan F, Chen X, Bi J, Dong Z, Wang F. Alleviating effects of zinc and 24-epibrassionlide on cadmium accumulation in rice plants under nitrogen application. CHEMOSPHERE 2023; 313:137650. [PMID: 36574788 DOI: 10.1016/j.chemosphere.2022.137650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Heavy metals such as cadmium (Cd) in farmland soil not only affect crop production, but also endanger human health through the food chain. Rice is the main food crop with the strongest ability to absorb Cd, remediation techniques to reduce soil uptake and grain accumulation of Cd are urgently required, for which the application of foliar spraying seems to be a convenient and auspicious method. This study clarified the effects of nitrogen (N), zinc (Zn), 24-epibrassionlide (EBL) and their combined application on the growth performance and physiological characteristics of Cd and Zn in rice plants under Cd stress. Experimental results showed that N and its combination with Zn, EBL treatments promoted rice growth and yield, especially raised the yield level by 81.12% under N + EBL treatment. Additionally, three EBL treatments (EBL, N + EBL, Zn + EBL) significantly reduced the TF values of Cd in TF stems-grains, TF leaves-grains and TF glumes-grains by 42.70%, 43.67% and 50.33%, while the EF soil-roots under Zn and N + Zn treatments was the lowest, which decreased by 55.39% and 57.71%, respectively. Further, the application of N, Zn, EBL and their combined treatments significantly increased glutathione (GSH) and phytochelatins (PCs) content as well as enhanced Cd distribute into cell walls of rice shoots and roots by 15.18% and 13.20%, respectively. In addition, N, Zn, EBL and their combined application increased Zn concentration, free amino acid and glutelin content, and decreased the Cd accumulation in albumin, glutelin and globulin, thus lowered Cd concentration in grains by 27.55%, 58.29% and 51.56%, respectively. These results comprehensive suggest that the possibility of N management combined with Zn or EBL application for maintaining high yield and alleviating Cd stress by regulating the absorption and remobilization process under mild stress.
Collapse
Affiliation(s)
- Zunxin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China.
| | - Yang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Mingsong Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Ying Yang
- College of Agronomy, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Rui Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Siyuan Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Zongmei Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Feiyu Yan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, Shanghai, 210095, PR China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, 210095, PR China
| | - Zhiyao Dong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, PR China
| | - Feibing Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| |
Collapse
|
9
|
Kibria KQ, Islam MA, Hoque S, Siddique MAB, Hossain MZ, Islam MA. Variations in cadmium accumulation among amon rice cultivars in Bangladesh and associated human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39888-39902. [PMID: 35113373 DOI: 10.1007/s11356-022-18762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Rice consumption is one of the major cadmium (Cd) exposure routes for human. Bangladeshi people have historically subsisted on a rice-based diet; however, only a few reports have investigated Cd accumulation by different rice cultivars in Bangladesh. This study was designed to investigate the uptake and accumulation of Cd in different rice cultivars and associated health risks to humans eating rice. A pot experiment was conducted to grow eight amon rice varieties under control, 5 and 10 mg Cd/kg soil under open air conditions. After harvesting the Cd fractionation, bioavailable Cd and rice grain Cd content were determined. Cd spiked as Cd2+ enriched the Cd bioavailability to plant by 35% (in 5 mg/kg stress) and 85% (in 10 mg/kg stress). There were variations among the rice varieties in their ability to accumulate Cd in grain and this was found to be 15-fold higher under control conditions. Grain Cd content significantly differed among the rice varieties at each level of soil Cd. In this study, BR-52 emerged as the most Cd-safe cultivar followed by BR-75, Rani salut, BR-71, BR-49, BR-76, BR-87 and lastly, BINA-7. Most of the agronomic parameters of rice concerning yield were affected by both rice varieties and soil Cd level. In different rice varieties, rhizosphere pH increased through root exudation which ultimately produced equilibria among the five major soil Cd fractions so that Cd became bioavailable to plants. All rice varieties showed high hazard quotient (HQ) values under Cd stress conditions and posed a risk to human health. For noncarcinogenic health risk assessment through HQ, we recommend 0.1 mg Cd/kg rice grain be used as the maximum allowable concentration (MAC) in calculating health risk for Bangladeshi people.
Collapse
Affiliation(s)
| | - Md Azharul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Sirajul Hoque
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Md Atikul Islam
- Environmental Science Discipline, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
10
|
Foliar Spraying of Selenium Combined with Biochar Alleviates Cadmium Toxicity in Peanuts and Enriches Selenium in Peanut Grains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063542. [PMID: 35329226 PMCID: PMC8952774 DOI: 10.3390/ijerph19063542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) pollution in soil, particularly in peanut production, is a problem that has attracted global concern and needs solutions urgently. Selenium (Se) can alleviate Cd toxicity; however, the underlying mechanisms are not completely understood. Therefore, two varieties of peanut (Arachis hypogaea Linn.), “Huayu 23” and “Huayu 20”, were chosen as the target crops for this study. A pot experiment was conducted to investigate the effects of two Se application methods combined with biochar on the accumulation of Cd and Se, and the best application method was identified. In addition, the role of Se in alleviating Cd toxicity in peanuts was studied. The results indicated that both Se and biochar decreased the Cd content in peanuts and alleviated Cd toxicity. However, the combined application of foliar Se and biochar significantly increased the peanut biomass by 73.44–132.41%, increased the grain yield of Huayu 23 by 0.60–1.09 fold, and Huayu 20 by 2.38–3.48 fold. Additionally, Cd content in peanut grains was decreased by 32.81–50.07%, and Se content was increased by 31.57–99.75 folds. Biochar can decrease the absorption of Cd from the soil, while Se can increase the accumulation of Cd in cell vacuoles by increasing glutathione and phytochelatin to decrease the movement of Cd into the grains. Therefore, our results indicate that the combined application of foliar Se and biochar can effectively promote the enrichment of Se in peanuts and suppress Cd toxicity.
Collapse
|