1
|
Sokolova DA, Halych TV, Zhuk VV, Kravets AP. Involvement of UV-C-induced genomic instability in stimulation рlant long-term protective reactions. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154171. [PMID: 38219284 DOI: 10.1016/j.jplph.2024.154171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
The study of the mechanisms affecting single stress factor impact on long-term metabolic rearrangements is necessary for understanding the principles of plant protective reactions. The objective of the study was to assess the involvement of UV-C-induced genomic instability in induction рlant long-term protective reactions. The study was carried out on two genotypes of chamomile, Perlyna Lisostepu (PL) variety and its mutant, using UV-C pre-sowing seed radiation exposure at dose levels 5-15 kJ/m2. Multiple DNA damages under different exposure doses were studied on plant tissues during the flowering stage using - ISSR-RAPD DNA marker PCR. In the cluster analysis of changes within the amplicon spectra as an integral group the Jacquard similarity index was used. The results of the study suggest that genomic instability is a link between the direct effects of UV-C exposure and stimulation of metabolic rearrangements at the final stages of ontogeny. A hypothetical scheme for the transformation of primary UV-C DNA damage into long-term maintenance of genomic instability signs has been proposed.
Collapse
Affiliation(s)
- Daryna A Sokolova
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine.
| | - Taras V Halych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine
| | - Vladyslav V Zhuk
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine
| | - Alexandra P Kravets
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Academika Zabolotnoho St., 03143, Kyiv, Ukraine
| |
Collapse
|
2
|
Yin Z, Wang Q, Cheng H. Synergistic Protective Effect of Interactions of Quercetin with Lycopene Against Ochratoxin A-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2023; 195:5253-5266. [PMID: 36625989 DOI: 10.1007/s12010-022-04287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease responsible for the inflammation of the innermost lining of the colon and rectum. The present study's objective is to determine the potential synergistic impact of quercetin (QR) and lycopene (LP) in ulcerative colitis (UC) induced in rats by ochratoxin A (OTA) by biochemical and morphological alterations. QR and LP were administered alone and in combination with the OTA for 7 days. OTA administration caused UC generation, resulting in significant changes in body weight percentage, disease activity index (DAI), macroscopic evaluation, colon weight/length ratio, and histological score. In addition to the above parameters, it also leads to elevated oxidative stress, i.e. increased malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), and hydroxyproline levels and decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels. Histological changes in the colon architecture were also observed suggestive of extensive mucosal damage. In addition, a high level of matrix metalloproteinase 7 (MMP7) was observed in immunohistochemistry, and a high level of gene expression of osteopontin (OPN), runt-related transcription factor 2 (RUNX2), MMP-7, and interleukin-6 (IL-6) was observed in OTA administered animals. The combination of QR and LP significantly restored the per cent body weight loss and DAI score and improved macroscopic and histological changes, colon weight/length ratio, and macroscopic damages. It also improved the biochemical parameters to near-normal levels, i.e. reduced MDA, NO, MPO, and hydroxyproline levels and increased SOD and GSH levels. In addition, OPN, Runx2, MMP-7, and IL-6 gene expression decreased compared to the OTA-induced UC group. Outcomes of the present study indicate the potential of QR + LP as anti-inflammatory and immunomodulatory agents against OTA-induced UC in rats.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Qian Wang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Hui Cheng
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China.
| |
Collapse
|
3
|
Attia AA, Hamad HA, Fawzy MA, Saleh SR. The Prophylactic Effect of Vitamin C and Vitamin B12 against Ultraviolet-C-Induced Hepatotoxicity in Male Rats. Molecules 2023; 28:molecules28114302. [PMID: 37298780 DOI: 10.3390/molecules28114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Ultraviolet C (UVC) devices are an effective means of disinfecting surfaces and protecting medical tools against various microbes, including coronavirus. Overexposure to UVC can induce oxidative stress, damage the genetic material, and harm biological systems. This study investigated the prophylactic efficacy of vitamin C and B12 against hepatotoxicity in UVC-intoxicated rats. Rats were irradiated with UVC (725.76, 967.68, and 1048.36 J/cm2) for 2 weeks. The rats were pretreated with the aforementioned antioxidants for two months before UVC irradiation. The prophylactic effect of vitamins against UVC hepatotoxicity was evaluated by monitoring the alteration of liver enzyme activities, antioxidant status, apoptotic and inflammatory markers, DNA fragmentation, and histological and ultrastructural alterations. Rats exposed to UVC showed a significant increase in liver enzymes, oxidant-antioxidant balance disruption, and increased hepatic inflammatory markers (TNF-α, IL-1β, iNOS, and IDO-1). Additionally, obvious over-expression of activated caspase-3 protein and DNA fragmentation were detected. Histological and ultrastructural examinations verified the biochemical findings. Co-treatment with vitamins ameliorated the deviated parameters to variable degrees. In conclusion, vitamin C could alleviate UVC-induced hepatotoxicity more than vitamin B12 by diminishing oxidative stress, inflammation, and DNA damage. This study could provide a reference for the clinical practice of vitamin C and B12 as radioprotective for workers in UVC disinfectant areas.
Collapse
Affiliation(s)
- Azza A Attia
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Huda A Hamad
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
- Zoology Department, Faculty of Science, Omar Al-Mukhtar University, Al Bayda 00218, Libya
| | - M Adel Fawzy
- Physics Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| | - Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt
| |
Collapse
|
4
|
Lycopene: an antioxidant product reducing dithane toxicity in Allium cepa L. Sci Rep 2023; 13:2290. [PMID: 36759547 PMCID: PMC9911395 DOI: 10.1038/s41598-023-29481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The current study was undertaken to assess the attenuating potential of lycopene against Dithane toxicity in Allium cepa L. roots. A. cepa bulbs were arranged in 6 groups. The control group was treated with tap water while the other groups were treated with 215 mg/L lycopene, 430 mg/L lycopene, 500 mg/L Dithane, 500 mg/L Dithane + 215 mg/L lycopene and 500 mg/L Dithane + 430 mg/L lycopene, respectively. When the treatments were completed, growth inhibition, biochemical, genotoxicity and meristematic cell injury analyses were performed. Lycopene did not cause any toxic effect when applied alone. While rooting percentage, root elongation, weight gain and mitotic index (MI) decreased in response to Dithane exposure, the frequency of micronucleus (MN) and chromosomal abnormalities (CAs) in addition to malondialdehyde (MDA) level and the catalytic activities of superoxide dismutase (SOD) and catalase (CAT) increased. Dithane promoted fragment, sticky chromosome, vagrant chromosome, unequal distribution of chromatin, bridge, nucleus bud and reverse polarization formation in meristem cells. Dithane also provoked meristematic cell injuries, including indistinct appearance of vascular tissue, epidermis cell damage and flattened cell nucleus. Lycopene mitigated all damage types, depending on the lycopene dose applied with Dithane. Hence, the data analysis revealed that lycopene provides exceptional antioxidant protection against the fungicide Dithane, which has devastating toxic potential.
Collapse
|
5
|
Kalefetoğlu Macar T, Macar O, Çavuşoğlu K, Yalçin E, Yapar K. Turmeric (Curcuma longa L.) tends to reduce the toxic effects of nickel (II) chloride in Allium cepa L. roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60508-60518. [PMID: 35420336 DOI: 10.1007/s11356-022-20171-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The immense protection potential of plant-derived products against heavy metal toxicity has become a considerable field of research. The goal of the present study was to evaluate the mitigative ability of turmeric against nickel (II) chloride (NiCl2)-related toxicity in the roots of Allium cepa L. For this purpose, one control (treated with tap water) and five treatment groups (treated with 440 mg/L turmeric, 880 mg/L turmeric, 1 mg/L NiCI2, 1 mg/L NiCI2 + 440 mg/L turmeric, and 1 mg/L NiCI2 + 880 mg/L turmeric, respectively) of Allium bulbs were established. Experimental conditions were maintained at room temperature for 3 days. Physiological, biochemical, cytogenetic, and meristematic integrity parameters were analyzed in all groups. NiCl2 reduced germination percentage, root elongation, and weight gain. Following NiCl2 application, the frequency of aberrant chromosomes and micronuclei increased, while mitotic index decreased. NiCl2 caused an increase in oxidative stress, which was evident by increased malondialdehyde level and catalytic activities of superoxide dismutase and catalase. Epidermal and cortex cell injuries as well as deformed cell nuclei and indistinct transmission tissue were observed as a result of NiCl2 treatment. When applied alone, turmeric, which did not cause any negative effects, led to an improvement in all parameters depending on the dose when applied together with NiCl2. Data from the study suggests that turmeric has remarkable protection potential against NiCl2 in Allium cepa.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey.
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Turkey
| | - Kürşad Yapar
- Department of Pharmacology, Faculty of Medicine, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
6
|
Çavuşoğlu K, Kalefetoğlu Macar T, Macar O, Çavuşoğlu D, Yalçın E. Comparative investigation of toxicity induced by UV-A and UV-C radiation using Allium test. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33988-33998. [PMID: 35032264 PMCID: PMC8760590 DOI: 10.1007/s11356-021-18147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Organisms are increasingly exposed to ultraviolet (UV) rays of sunlight, due to the thinning of the ozone layer and its widespread use in sterilization processes, especially against the SARS-CoV-2 virus. The present study was conducted with the purpose of evaluating the damages of UV-A and UV-C radiations in Allium cepa L. roots. The effects of two different types of UV on some physiological, biochemical, cytogenotoxic, and anatomical parameters were investigated in a multifaceted study. Three groups were formed from Allium bulbs, one of which was the control group. One of the other groups was exposed to 254 nm (UV-C) and the other to 365 nm (UV-A) UV. Growth retardation effect of UV was investigated with respect to germination percentage, total weight gain, and root elongation, while cytogenotoxicity arisen from UV exposure was analyzed using mitotic index (MI) and chromosomal aberration (CA) and micronucleus (MN) frequency. Oxidative stress due to UV application was investigated based on the accumulation of malondialdehyde (MDA) and the total activities of superoxide dismutase (SOD) and catalase (CAT) enzymes. Also, anatomical changes induced by UV-A and UV-C were analyzed in root meristematic cells. UV treatments caused significant reductions in growth-related parameters. Both UV treatments caused a significant increase in MDA levels and induction of SOD and CAT enzymes in root meristematic cells. A decrease in MI and an increase in the frequency of MN and CAs were observed in root tip cells, indicating the cytogenotoxic effect of UV application. Anatomical damages such as epidermis cell damage, cortex cell damage, necrotic zones, giant cell nucleus, and indistinct transmission tissue occurred in cells exposed to UV. All of the physiological, biochemical, cytogenetic, and anatomical damages observed in this study were more severe in cells treated with UV-C compared to UV-A. This study suggested that UV exposure triggered growth inhibition, cytogenotoxicity, oxidative stress, and meristematic cell damages in A. cepa roots depending on the wavelength.
Collapse
Affiliation(s)
- Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey.
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey
| | - Dilek Çavuşoğlu
- Department of Plant and Animal Production, Atabey Vocational School, Isparta Applied Sciences University, 32200, Isparta, Turkey
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|