1
|
Liu T, Liu G, Xu Y, Huang Y, Zhang Y, Wu Y, Xu Y. Zearalenone Induces Blood-Testis Barrier Damage through Endoplasmic Reticulum Stress-Mediated Paraptosis of Sertoli Cells in Goats. Int J Mol Sci 2023; 25:553. [PMID: 38203724 PMCID: PMC10778680 DOI: 10.3390/ijms25010553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Zearalenone (ZEA) is present worldwide as a serious contaminant of food and feed and causes male reproductive toxicity. The implication of paraptosis, which is a nonclassical paradigm of cell death, is unclear in ZEA-induced male reproductive disorders. In this study, the toxic effects of ZEA on the blood-testis barrier (BTB) and the related mechanisms of paraptosis were detected in goats. ZEA exposure, in vivo, caused a significant decrease in spermatozoon quality, the destruction of seminiferous tubules, and damage to the BTB integrity. Furthermore, ZEA exposure to Sertoli cells (SCs) in vitro showed similar dysfunction in structure and barrier function. Importantly, the formation of massive cytoplasmic vacuoles in ZEA-treated SCs corresponded to the highly swollen and dilative endoplasmic reticulum (ER), and paraptosis inhibition significantly alleviated ZEA-induced SC death and vacuolization, which indicated the important contribution of paraptosis in ZEA-induced BTB damage. Meanwhile, the expression of ER stress marker proteins was increased after ZEA treatment but decreased under the inhibition of paraptosis. The vacuole formation and SC death, induced by ZEA, were remarkably blocked by ER stress inhibition. In conclusion, these results facilitate the exploration of the mechanisms of the SC paraptosis involved in ZEA-induced BTB damage in goats.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.L.); (G.L.); (Y.X.); (Y.Z.)
| | - Gengchen Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.L.); (G.L.); (Y.X.); (Y.Z.)
| | - Yinghuan Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.L.); (G.L.); (Y.X.); (Y.Z.)
| | - Yuqi Huang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China;
| | - Yunxuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.L.); (G.L.); (Y.X.); (Y.Z.)
| | - Yongjie Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.L.); (G.L.); (Y.X.); (Y.Z.)
| | - Yongping Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (T.L.); (G.L.); (Y.X.); (Y.Z.)
| |
Collapse
|
2
|
Wang P, Yao Q, Meng X, Yang X, Wang X, Lu Q, Liu A. Effective protective agents against organ toxicity of deoxynivalenol and their detoxification mechanisms: A review. Food Chem Toxicol 2023; 182:114121. [PMID: 37890761 DOI: 10.1016/j.fct.2023.114121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.
Collapse
Affiliation(s)
- Pengju Wang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qin Yao
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiangwen Meng
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xiaosong Yang
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Aimei Liu
- Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
3
|
Lin J, Liang T, Huang Y, Zuo C, Wang D, Liu Y. Co-occurrence of Mycotoxin-Induced Hepatotoxicity in Mice Inhibited by Lycopene: Mitochondrial Impairment and Early Hepatic Fibrosis. Mol Nutr Food Res 2023; 67:e2200671. [PMID: 37485620 DOI: 10.1002/mnfr.202200671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/22/2023] [Indexed: 07/25/2023]
Abstract
SCOPE Mycotoxins co-contamination of agricultural products poses a serious threat to human and animal health, especially hepatic dysfunction. Zearalenone (ZEN), deoxynivalenol (DON), and aflatoxin B1 (AFB1) are three commonly co-occurring mycotoxins. This study is to determine whether lycopene (LYC) can alleviate hepatic toxicity induced by the co-occurrence of ZEN, DON, and AFB1 in mice. METHODS AND RESULTS Eighty 6-week-old male ICR mice are divided into four groups: CON group (solvent control), LYC group (10 mg kg-1 LYC), Co-M group (10 mg kg-1 ZEN + 1 mg kg-1 DON + 0.5 mg kg-1 AFB1), and LYC+Co-M group (10 mg kg-1 LYC + 10 mg kg-1 ZEN + 1 mg kg-1 DON + 0.5 mg kg-1 AFB1). The results show that LYC can suppress the co-occurrence of mycotoxin-induced mitochondrial swelling and vacuolization accompanied by dysregulation of indices of mitochondrial dynamics (Mitofusin 1 (Mfn1), Mfn2, Optic atrophy 1 (Opa1), Dynamin-related protein 1 (Drp1), Fission 1 (Fis1) at the mRNA level; DRP1 and FIS1 at the protein level). LYC effectively inhibits co-occurrence of mycotoxin-induced activation of Cytochrome P450 2E1, and early fibrosis, as determined by staining with Masson's trichrome and α-SMA protein. CONCLUSION LYC successfully attenuates early hepatic fibrosis mainly through antioxidant activities and prevented mitochondrial injury.
Collapse
Affiliation(s)
- Jia Lin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tianzeng Liang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yang Huang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Cuige Zuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
4
|
Cao Y, Wang J, Li X, Liu B, Li C, Sun Y, Zou K. Gastrodin protects porcine sertoli cells from zearalenone-induced abnormal secretion of glial cell line-derived neurotrophic factor through the NOTCH signaling pathway. Reprod Biol 2023; 23:100781. [PMID: 37285694 DOI: 10.1016/j.repbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin found in moldy diets and is associated with reproductive dysfunction. However, the molecular underpinning of ZEA in impairment of spermatogenesis remains largely unknown. To unveil the toxic mechanism of ZEA, we established a co-culture model using porcine Sertoli cells and porcine spermatogonial stem cells (pSSCs) to investigate the impact of ZEA on these cell types and their associated signaling pathways. Our findings showed that low concentration of ZEA inhibited cell apoptosis, while high concentration induced cell apoptosis. Furthermore, the expression levels of Wilms' tumor 1 (WT1), proliferating cell nuclear antigen (PCNA) and glial cell line-derived neurotrophic factor (GDNF) were significantly decreased in ZEA treatment group, while concurrently upregulating the transcriptional levels of the NOTCH signaling pathway target genes HES1 and HEY1. The addition of the NOTCH signaling pathway inhibitor DAPT (GSI-IX) alleviated the damage to porcine Sertoli cells caused by ZEA. Gastrodin (GAS) significantly increased the expression levels of WT1, PCNA and GDNF, and inhibited the transcription of HES1 and HEY1. GAS also efficiently restored the decreased expression levels of DDX4, PCNA and PGP9.5 in co-cultured pSSCs suggesting its potential in ameliorating the damage caused by ZEA to Sertoli cells and pSSCs. In conclusion, the present study demonstrates that ZEA disrupts pSSCs self-renewal by affecting the function of porcine Sertoli cell, and highlights the protective mechanism of GAS through the regulation of the NOTCH signaling pathway. These findings may offer a novel strategy for alleviating ZEA-induced male reproductive dysfunction in animal production.
Collapse
Affiliation(s)
- Yulu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Biyun Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongjun Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijin Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Miao C, Wang Z, Wang X, Huang W, Gao X, Cao Z. Deoxynivalenol Induces Blood-Testis Barrier Dysfunction through Disrupting p38 Signaling Pathway-Mediated Tight Junction Protein Expression and Distribution in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12829-12838. [PMID: 37590035 DOI: 10.1021/acs.jafc.3c03552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Deoxynivalenol (DON) is widely present in cereals and processed grains. It can disrupt the blood-testicular barrier (BTB), leading to sterility in males; however, the mechanism is unknown. In this study, 30 Kunming mice and TM4 cells were exposed to 0 or 4.8 mg/kg (28 d) and 0-2.4 μM (24 h) of DON, respectively. Histopathological findings showed that DON increased BTB permeability in mice, leading to tight junction (TJ) structural damage. Immunofluorescence results indicated that DON disrupted the localization of zonula occludens (ZO)-1. The results of protein and mRNA expression showed that the expression of ZO-1, occludin, and claudin-11 was reduced, and that the p38/GSK-3β/snail and p38/ATF-2/MLCK signaling pathways were activated in mouse testes and TM4 cells. Pretreatment with the p38 inhibitor SB203580 maintained TJ integrity in TM4 cells after exposure to DON. Thus, DON induced BTB dysfunction in mice by disrupting p38 pathway-mediated TJ expression and distribution.
Collapse
Affiliation(s)
- Chenjiao Miao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zijia Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Xin Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Wanyue Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| | - Zheng Cao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China
| |
Collapse
|
6
|
Hai S, Chen J, Ma L, Wang C, Chen C, Rahman SU, Zhao C, Feng S, Wu J, Wang X. Combination of Zearalenone and Deoxynivalenol Induces Apoptosis by Mitochondrial Pathway in Piglet Sertoli Cells: Role of Endoplasmic Reticulum Stress. Toxins (Basel) 2023; 15:471. [PMID: 37505740 PMCID: PMC10467067 DOI: 10.3390/toxins15070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Zearalenone (ZEA) and deoxynivalenol (DON) are widely found in various feeds, which harms livestock's reproductive health. Both mitochondria and endoplasmic reticulum (ER) can regulate cell apoptosis. This study aimed to explore the regulatory mechanism of endoplasmic reticulum stress (ERS) on ZEA- combined with DON-induced mitochondrial pathway apoptosis in piglet Sertoli cells (SCs). The results showed that ZEA + DON damaged the ultrastructure of the cells, induced apoptosis, decreased mitochondrial membrane potential, promoted the expression of cytochrome c (CytC), and decreased the cell survival rate. Furthermore, ZEA + DON increased the relative mRNA and protein expression of Bid, Caspase-3, Drp1, and P53, while that of Bcl-2 and Mfn2 declined. ZEA + DON was added after pretreatment with 4-phenylbutyric acid (4-PBA). The results showed that 4-PBA could alleviate the toxicity of ZEA + DON toward SCs. Compared with the ZEA + DON group, 4-PBA improved the cell survival rate, decreased the apoptosis rate, inhibited CytC expression, and increased mitochondrial membrane potential, and the damage to the cell ultrastructure was alleviated. Moreover, after pretreatment with 4-PBA, the relative mRNA and protein expression of Bid, Caspase-3, Drp1, and P53 were downregulated, while the relative mRNA and protein expression of Bcl-2 and Mfn2 were upregulated. It can be concluded that ERS plays an important part in the apoptosis of SCs co-infected with ZEA-DON through the mitochondrial apoptosis pathway, and intervention in this process can provide a new way to alleviate the reproductive toxicity of mycotoxins.
Collapse
Affiliation(s)
- Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Chenlong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Chuangjiang Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.H.); (J.C.); (L.M.); (C.W.); (C.C.); (S.U.R.); (C.Z.); (S.F.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| |
Collapse
|
7
|
Ma L, Hai S, Wang C, Chen C, Rahman SU, Zhao C, Bazai MA, Feng S, Wang X. Zearalenone induces mitochondria-associated endoplasmic reticulum membranes dysfunction in piglet Sertoli cells based on endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114710. [PMID: 36950988 DOI: 10.1016/j.ecoenv.2023.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Zearalenone (ZEA) is an estrogen-like mycotoxin, which mainly led to reproductive toxicity. The study aimed to investigate the molecular mechanism of ZEA-induced dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAM) in piglet Sertoli cells (SCs) via the endoplasmic reticulum stress (ERS) pathway. In this study, SCs were used as a research object that was exposed to ZEA, and ERS inhibitor 4-Phenylbutyrate acid (4-PBA) was used as a reference. The results showed that ZEA damaged cell viability and increased Ca2+ levels; damaged the structure of MAM; up-regulated the relative mRNA and protein expression of glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1), while inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel 1 (VDAC1), mitofusin2 (Mfn2) and phosphofurin acidic cluster protein 2 (PACS2) were down-regulated. After a 3 h 4-PBA-pretreatment, ZEA was added for mixed culture. The results of 4-PBA pretreatment showed that inhibition of ERS reduced the cytotoxicity of ZEA against piglet SCs. Compared with the ZEA group, inhibition of ERS increased cell viability and decreased Ca2+ levels; restored the structural damage of MAM; down-regulated the relative mRNA and protein expression of Grp75 and Miro1; and up-regulated the relative mRNA and protein expression of IP3R, VDAC1, Mfn2, and PACS2. In conclusion, ZEA can induce MAM dysfunction in piglet SCs via the ERS pathway, whereas ER can regulate mitochondria through MAM.
Collapse
Affiliation(s)
- Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Chenlong Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Chuangjiang Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | | | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei 230036, China.
| |
Collapse
|
8
|
Yang X, Huang T, Chen Y, Chen F, Liu Y, Wang Y, Song W, Zhang J, Jiang Y, Wang F, Zhang C. Deoxynivalenol induces testicular ferroptosis by regulating the Nrf2/System Xc -/GPX4 axis. Food Chem Toxicol 2023; 175:113730. [PMID: 36925038 DOI: 10.1016/j.fct.2023.113730] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin contaminant in food and feed. DON accumulation in food chain severely threatens human and animal health due to the toxic effects on the reproduction system. However, the underlying mechanism of DON on male reproductive dysfunction is still in debate and there is little information about whether DON triggers testicular ferroptosis. In this study, male C57BL/6 mice were divided into 4 groups and treated by oral gavage with 0, 0.5, 1.0, 2.0 mg/kg BW DON for 28 days. Firstly, we proved that male reproduction dysfunction was induced by DON through assessing testicular histopathology, serum testosterone level as well as blood-testis barrier integrity. Then, we verified ferroptosis occurred in DON-induced testicular dysfunction model through disrupting iron homeostasis, increasing lipid peroxidation and inhibiting system Xc-/Gpx4 axis. Notably, the present data showed DON reduced antioxidant capacity via blocking Nrf2 pathway to lead to the further weakness of ferroptosis resistance. Altogether, these results indicated that DON caused mice testicular ferroptosis associated with inhibiting Nrf2/System Xc-/GPx4 axis, which provided that maintaining testicular iron homeostasis and activating Nrf2 pathway may be a potential target for alleviating testicular toxicity of DON in the future.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yu Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Juntao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
9
|
Zhao J, Hai S, Chen J, Ma L, Rahman SU, Zhao C, Feng S, Li Y, Wu J, Wang X. Zearalenone Induces Apoptosis in Porcine Endometrial Stromal Cells through JNK Signaling Pathway Based on Endoplasmic Reticulum Stress. Toxins (Basel) 2022; 14:toxins14110758. [PMID: 36356008 PMCID: PMC9694026 DOI: 10.3390/toxins14110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Zearalenone (ZEA) is an estrogen-like mycotoxin characterized mainly by reproductive toxicity, to which pigs are particularly sensitive. The aim of this study was to investigate the molecular mechanism of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) by activating the JNK signaling pathway through endoplasmic reticulum stress (ERS). In this study, ESCs were exposed to ZEA, with the ERS inhibitor sodium 4-Phenylbutyrate (4-PBA) as a reference. The results showed that ZEA could damage cell structures, induce endoplasmic reticulum swelling and fragmentation, and decreased the ratio of live cells to dead cells significantly. In addition, ZEA could increase reactive oxygen species and Ca2+ levels; upregulate the expression of GRP78, CHOP, PERK, ASK1 and JNK; activate JNK phosphorylation and its high expression in the nucleus; upregulate the expression Caspase 3 and Caspase 9; and increase the Bax/Bcl-2 ratio, resulting in increased apoptosis. After 3 h of 4-PBA-pretreatment, ZEA was added for mixed culture, which showed that the inhibition of ERS could reduce the cytotoxicity of ZEA toward ESCs. Compared with the ZEA group, ERS inhibition increased cell viability; downregulated the expression of GRP78, CHOP, PERK, ASK1 and JNK; and decreased the nuclear level of p-JNK. The Bax/Bcl-2 ratio and the expression of Caspase 3 and Caspase 9 were downregulated, significantly alleviating apoptosis. These results demonstrate that ZEA can alter the morphology of ESCs, destroy their ultrastructure, and activate the JNK signaling via the ERS pathway, leading to apoptosis.
Collapse
Affiliation(s)
- Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sirao Hai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, Hefei 230036, China
- Correspondence:
| |
Collapse
|
10
|
Role of PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway in Resveratrol Alleviation of Zearalenone-Induced Oxidative Stress and Apoptosis in TM4 Cells. Toxins (Basel) 2022; 14:toxins14110733. [PMID: 36355983 PMCID: PMC9694162 DOI: 10.3390/toxins14110733] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Zearalenone (ZEA) is a common mycotoxin that induces oxidative stress (OS) and affects the male reproductive system in animals. Resveratrol (RSV) has good antioxidant activity and can activate nuclear factor erythroid 2-related factor (Nrf2) to protect cells through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The objective of this study was to investigate the protective effect and the mechanism of RSV on OS and apoptosis in TM4 cells induced by ZEA. Prior to being exposed to ZEA, TM4 cells were pretreated with RSV or the PI3K/Akt inhibitor LY294002. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assays. Flow cytometry was used to determine the level of apoptosis and intracellular reactive oxygen species (ROS). The expression of poly ADP-ribose polymerase (PARP), caspase-3, BCL2-associated X (Bax)/B-cell lymphoma-2 (Bcl-2), and PI3K/Akt-mediated Nrf2/heme oxygenase 1 (HO-1) signaling pathway-related proteins was evaluated by Western blotting. Nrf2 siRNA transfection and LY294002 treatment were used to investigate the role of the Nrf2/HO-1 and PI3K/Akt signaling pathways in RSV alleviation of ZEA-induced OS. The results showed that pretreatment with RSV significantly reduced the expression of apoptosis-related proteins and increased cell viability. Catalase (CAT) activity and glutathione (GSH) levels were also increased, whereas malondialdehyde (MDA) and ROS levels decreased (p < 0.05). RSV also upregulated Akt phosphorylation, Nrf2 nuclear translocation, and HO-1 expression under conditions of OS (p < 0.05). Transfection with Nrf2 siRNA abolished the protective effects of RSV against ZEA-induced cytotoxicity (p < 0.05), ROS accumulation (p < 0.05), and apoptosis (p < 0.05). LY294002 completely blocked the RSV-mediated increase in Nrf2 nuclear translocation (p < 0.05), HO-1 expression (p < 0.05), and cytoprotective activity (p < 0.05). Collectively, the above findings indicate that RSV can protect against ZEA-induced OS and apoptosis in TM4 cells by PI3K/Akt-mediated activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
11
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Research Progress of Safety of Zearalenone: A Review. Toxins (Basel) 2022; 14:toxins14060386. [PMID: 35737047 PMCID: PMC9230539 DOI: 10.3390/toxins14060386] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Zearalenone, a mycotoxin produced by fungi of the genus Fusarium, widely exists in animal feed and human food. The structure of zearalenone is similar to estrogen, so it mainly has estrogenic effects on various organisms. Products contaminated with zearalenone can pose risks to animals and humans. Therefore, it is imperative to carry out toxicological research on zearalenone and evaluate its risk to human health. This paper briefly introduces the production, physical, and chemical properties of zearalenone and the research progress of its toxicity kinetics, focusing on its genetic toxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, carcinogenicity, endocrine interference, and its impact on intestinal health. Finally, the progress of the risk assessment of human exposure is summarized to provide a reference for the follow-up study of zearalenone.
Collapse
|
13
|
Yang X, Liu P, Zhang X, Zhang J, Cui Y, Song M, Li Y. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112702. [PMID: 34478974 DOI: 10.1016/j.ecoenv.2021.112702] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
T-2 toxin is an inevitable mycotoxin in food products and feeds. It is a proven toxicant impairing the male reproductive system. However, previous studies have concentrated on the toxic effect of T-2 toxin on Leydig cells, with little attention on the Sertoli cell cytotoxicity. Therefore, this study aimed to establish the toxic mechanism of T-2 toxin on Sertoli cells. The Sertoli cell line (TM4 cell) was cultured and exposed to different concentrations of T-2 toxin with/without N-acetyl-L-cysteine (NAC) for 24 h. A CCK-8 assay then measured the cell viability. In addition, the expression of TM4 cell biomarkers (FSHR and ABP) and functional factors (occludin (Ocln), zonula occluden-1 (ZO-1), Connexin 43 (Cx-43), and N-Cadherin (N-cad)) were measured by qRT-PCR and Western blotting. The oxidative stress status (ROS, MDA, CAT, and SOD) and apoptosis rate, including the caspase-9, 8, and 3 activities in TM4 cells, were analyzed. We established that (1): T-2 toxin decreased TM4 cells viability and the half-maximal inhibitory concentration was 8.10 nM. (2): T-2 toxin-induced oxidative stress, evidenced by increased ROS and MDA contents, and inhibited CAT and SOD activities. (3): T-2 toxin inhibited FSHR, ABP, ocln, ZO-1, Cx-43, and N-Cad expressions. (4): T-2 toxin promoted TM4 cell apoptosis and caspase-9, 8, and 3 activities. (5): N-acetyl-L-cysteine relieved oxidative stress, functional impairment, and apoptosis in TM4 cells treated with T-2 toxin. Thus, T-2 toxin induced TM4 cell dysfunction through ROS-induced apoptosis.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Kowalska K, Kozieł MJ, Habrowska-Górczyńska DE, Urbanek KA, Domińska K, Piastowska-Ciesielska AW. Deoxynivalenol induces apoptosis and autophagy in human prostate epithelial cells via PI3K/Akt signaling pathway. Arch Toxicol 2021; 96:231-241. [PMID: 34677630 PMCID: PMC8748346 DOI: 10.1007/s00204-021-03176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is one of the most deregulated signaling pathway in prostate cancer. It controls basic processes in cells: cell proliferation and death. Any disturbances in the balance between cell death and survival might result in carcinogenesis. Deoxynivalenol (DON) is one of the most common mycotoxins, a toxic metabolites of fungi, present in our everyday diet and feed. Although previous studies reported DON to induce oxidative stress, modulate steroidogenesis, DNA damage and cell cycle modulation triggering together its toxicity, its effect on normal prostate epithelial cells is not known. The aim of the study was to evaluate the effect of DON on the apoptosis and autophagy in normal prostate epithelial cells via modulation of PI3K/Akt signaling pathway. The results showed that DON in a dose of 30 µM and 10 µM induces oxidative stress, DNA damage and cell cycle arrest in G2/M cell cycle phase. The higher concentration of DON induces apoptosis, whereas lower one autophagy in PNT1A cells, indicating that modulation of PI3K/Akt by DON results in the induction of autophagy triggering apoptosis in normal prostate epithelial cells.
Collapse
Affiliation(s)
- Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | | - Kinga Anna Urbanek
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Kamila Domińska
- Medical University of Lodz, Department of Comparative Endocrinology, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | |
Collapse
|
15
|
Song JL, Zhang GL. Deoxynivalenol and Zearalenone: Different Mycotoxins with Different Toxic Effects in the Sertoli Cells of Equus asinus. Cells 2021; 10:cells10081898. [PMID: 34440667 PMCID: PMC8394322 DOI: 10.3390/cells10081898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is little information about the toxicity of mycotoxins on testis development in Equus asinus. This study investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2) Methods: We administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro; (3) Results: The results showed that 10 μM DON exposure remarkably changed pyroptosis-associated genes and that 30 μM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 μM ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs; (4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence:
| |
Collapse
|