1
|
Ren X, Du Y, Qu X, Li Y, Yin L, Shen K, Zhang J, Liu Y. Controllable Synthesis of ZnO Nanoparticles with Improved Photocatalytic Performance for the Degradation of Rhodamine B under Ultraviolet Light Irradiation. Molecules 2023; 28:5135. [PMID: 37446798 DOI: 10.3390/molecules28135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In this work, two-dimensional (2D) Zn-HMT (Zn(NO3)2(HMT)2(H2O)2]n) nanosheets were synthesized using a facile one-step chemical precipitation in the presence of Zn(NO3)2, hexamine (HMT), and anhydrous ethanol at room temperature. Subsequently, hexagonal Tx-ZnO (Tx-ZnO refers to the zinc oxide (ZnO) nanoparticles) were synthesized by a high-temperature solid-phase method at different temperatures (x = 500, 550, 600, 650, 700, 750, and 800 °C) nanoparticles with different morphologies were synthesized by a high-temperature calcination approach using 2D Zn-HMT nanosheets as precursor. The crystal structure, morphology, specific surface areas, surface and interface properties, optical properties, and charge migration behaviors of the as-synthesized Tx-ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), automatic specific surface and aperture analyzer, X-ray photoelectron spectroscopy (XPS), UV-visible spectrophotometer, photoluminescence (PL) spectra, and electrochemical impedance spectroscopy (EIS). The photocatalytic performances and stabilities of the as-synthesized typical Tx-ZnO nanoparticles with various morphologies were evaluated and compared with the commercial ZnO (CM-ZnO) nanoparticle. The T700-ZnO nanoparticle with spherical and irregular morphology exhibited the highest photocatalytic activity (99.12%) for the degradation of Rhodamine B (RhB), compared to T500-ZnO (92.32%), T600-ZnO (90.65%), T800-ZnO (44.04%), and the CM-ZnO (88.38%) nanoparticle, which can be attributed to the cooperative effects of higher crystallinity, bigger crystal size, the strongest separation efficiency, the lowest recombination rate, the fastest charge carrier transfer path, and the highest charge-transfer efficiency. The superior photocatalytic activity illustrated by the T700-ZnO nanoparticle makes it have potential application prospects for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Xinyue Ren
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Yien Du
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Xinji Qu
- Qingdao Second Health School of Shandong Province, Qingdao 266308, China
| | - Yumei Li
- Qingdao Second Health School of Shandong Province, Qingdao 266308, China
| | - Luxi Yin
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Kaixin Shen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Jingwen Zhang
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| | - Yufang Liu
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
| |
Collapse
|
2
|
Golubeva A, Roychoudhury P, Dąbek P, Pałczyńska J, Pryshchepa O, Piszczek P, Pomastowski P, Gloc M, Dobrucka R, Feliczak-Guzik A, Nowak I, Kurzydłowski KJ, Buszewski B, Witkowski A. A novel effective bio-originated methylene blue adsorbent: the porous biosilica from three marine diatom strains of Nanofrustulum spp. (Bacillariophyta). Sci Rep 2023; 13:9168. [PMID: 37280270 PMCID: PMC10244400 DOI: 10.1038/s41598-023-36408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.
Collapse
Affiliation(s)
- Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland.
| | - Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| | - Jagoda Pałczyńska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Toruń, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875, Poznan, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Krzysztof J Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45 c, 15-351, Bialystok, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Toruń, Poland
- Prof. Jan Czochralski Kuyavian-Pomeranian Research and Development Centre, Krasińskiego 4, 87-100, Toruń, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383, Szczecin, Poland
| |
Collapse
|
3
|
Gündel SDS, Favarin FR, Machado ÉF, Druzian DM, Dos Santos C, Brum LFW, da Silva AS, da Silva WL, Ourique AF. Photocatalytic degradation of Rhodamine B dye by nanostructured powder systems containing nanoencapsulated curcumin or ascorbic acid and ascorbyl palmitate liposomal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27555-4. [PMID: 37178297 DOI: 10.1007/s11356-023-27555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Due to inadequate treatment and incorrect management, wastewater with dyes has a great toxic potential as an environmental liability, representing a major concern. In this context, this work aims to investigate the potential application of nanostructured powdery systems (nanocapsules and liposomes) in the photodegradation of Rhodamine B (RhB) dye, under UV and visible irradiation. Curcumin nanocapsules and liposomes containing ascorbic acid and ascorbyl palmitate were prepared, characterized, and dried using the spray drying technique. The drying processes of the nanocapsule and the liposome showed yields of 88% and 62%, respectively, and, after aqueous resuspension of the dry powders, it was possible to recover the nanocapsule size (140 nm) and liposome size (160 nm). The dry powders were characterized by Fourier transform infrared spectroscopy (FTIR), N2 physisorption at 77 K, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS-UV). Under UV irradiation, 64.8% and 58.48% of RhB were removed with nanocapsules and liposomes, respectively. While under visible radiation, nanocapsules and liposomes were able to degrade 59.54% and 48.79% of RhB, respectively. Under the same conditions, commercial TiO2 showed degradation of 50.02% (UV) and 42.14% (visible). After 5 cycles of reuse, there was a decrease of about 5% for dry powders under UV irradiation and 7.5% under visible irradiation. Therefore, the nanostructured systems developed have potential application in heterogeneous photocatalysis for the degradation of organic pollutants, such as RhB, as they demonstrated superior photocatalytic performance to commercial catalysts (nanoencapsulated curcumin > ascorbic acid and ascorbyl palmitate liposomal > TiO2).
Collapse
Affiliation(s)
- Samanta da Silva Gündel
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil
| | - Fernanda Reis Favarin
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil
| | - Éricles Forrati Machado
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil
- Nanoscience Graduate Program, Universidade Franciscana (UFN), Santa Maria, RS, 97010-491, Brazil
| | - Daniel Moro Druzian
- Nanoscience Graduate Program, Universidade Franciscana (UFN), Santa Maria, RS, 97010-491, Brazil
| | - Cristiane Dos Santos
- Chemistry Institute, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Luis Fernando Wentz Brum
- Chemistry Institute, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Aleksandro Schafer da Silva
- Department of Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, SC, 89815-630, Brazil
| | | | - Aline Ferreira Ourique
- Laboratory of Nanotechnology, Universidade Franciscana (UFN), Santa Maria, RS, 97010-032, Brazil.
- Nanoscience Graduate Program, Universidade Franciscana (UFN), Santa Maria, RS, 97010-491, Brazil.
| |
Collapse
|
4
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
5
|
Rodrigues Oviedo L, Rodrigues Oviedo V, Dornelles Dalla Nora L, Leonardo da Silva W. ADSORPTION OF ORGANIC DYES ONTO NANOZEOLITES: A MACHINE LEARNING STUDY. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Singh KB, Upadhyay D, Gautam N, Snigdha, Gautam A, Pandey G. Sonochemical reassembling of Acacia nilotica bark extract mediated Mg doped WO3@g-C3N4 ternary nanocomposite: A robust nanophotocatalyst. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
7
|
Oliveira Vargas G, Schnorr C, Bastista Nunes F, da Rosa Salles T, Zancan Tonel M, Binotto Fagan S, Zanella da Silva I, F. O. Silva L, Roberto Mortari S, Luiz Dotto G, Rodrigo Bohn Rhoden C. Highly Furosemide Uptake Employing Magnetic Graphene Oxide: DFT modeling Combined to Experimental Approach. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
9
|
de Oliveira MP, Schnorr C, da Rosa Salles T, da Silva Bruckmann F, Baumann L, Muller EI, da Silva Garcia WJ, de Oliveira AH, Silva LFO, Rhoden CRB. Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. WATER 2023; 15:293. [DOI: 10.3390/w15020293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This paper reports a high efficiency uptake of captopril (CPT), employing magnetic graphene oxide (MGO) as the adsorbent. The graphene oxide (GO) was produced through an oxidation and exfoliation method, and the magnetization technique by the co-precipitation method. The nanomaterials were characterized by FTIR, XRD, SEM, Raman, and VSM analysis. The optimal condition was reached by employing GO·Fe3O4 at pH 3.0 (50 mg of adsorbent and 50 mg L−1 of CPT), presenting values of removal percentage and maximum adsorption capacity of 99.43% and 100.41 mg g−1, respectively. The CPT adsorption was dependent on adsorbent dosage, initial concentration of adsorbate, pH, and ionic strength. Sips and Elovich models showed the best adjustment for experimental data, suggesting that adsorption occurs in a heterogeneous surface. Thermodynamic parameters reveal a favorable, exothermic, involving a chemisorption process. The magnetic carbon nanomaterial exhibited a high efficiency after five adsorption/desorption cycles. Finally, the GO·Fe3O4 showed an excellent performance in CPT removal, allowing future application in waste management.
Collapse
|
10
|
Bruckmann FS, Schnorr C, Oviedo LR, Knani S, Silva LFO, Silva WL, Dotto GL, Bohn Rhoden CR. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022; 27:6261. [PMID: 36234798 PMCID: PMC9572628 DOI: 10.3390/molecules27196261] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The extensive use of pesticides in agriculture has significantly impacted the environment and human health, as these pollutants are inadequately disposed of into water bodies. In addition, pesticides can cause adverse effects on humans and aquatic animals due to their incomplete removal from the aqueous medium by conventional wastewater treatments. Therefore, processes such as heterogeneous photocatalysis and adsorption by nanocomposites have received special attention in the scientific community due to their unique properties and ability to degrade and remove several organic pollutants, including pesticides. This report reviews the use of nanocomposites in pesticide adsorption and photocatalytic degradation from aqueous solutions. A bibliographic search was performed using the ScienceDirect, American Chemical Society (ACS), and Royal Society of Chemistry (RSC) indexes, using Boolean logic and the following descriptors: "pesticide degradation" AND "photocatalysis" AND "nanocomposites"; "nanocomposites" AND "pesticides" AND "adsorption". The search was limited to research article documents in the last ten years (from January 2012 to June 2022). The results made it possible to verify that the most dangerous pesticides are not the most commonly degraded/removed from wastewater. At the same time, the potential of the supported nanocatalysts and nanoadsorbents in the decontamination of wastewater-containing pesticides is confirmed once they present reduced bandgap energy, which occurs over a wide range of wavelengths. Moreover, due to the great affinity of the supported nanocatalysts with pesticides, better charge separation, high removal, and degradation values are reported for these organic compounds. Thus, the class of the nanocomposites investigated in this work, magnetic or not, can be characterized as suitable nanomaterials with potential and unique properties useful in heterogeneous photocatalysts and the adsorption of pesticides.
Collapse
Affiliation(s)
- Franciele S. Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Carlos Schnorr
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - Leandro R. Oviedo
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Salah Knani
- College of Science, Northern Border University, Arar 91431, Saudi Arabia
- Laboratory of Quantum and Statistical Physics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5079, Tunisia
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Atlántico, Colombia
| | - William L. Silva
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| | - Guilherme L. Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Department of Chemical Enginnering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cristiano R. Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
- Programa de Pós-Graduação em Nanociências, Universidade Franciscana-UFN, Santa Maria 97010-032, RS, Brazil
| |
Collapse
|