1
|
Mushtaq N, Altaf MA, Shu H, Lu X, Cheng S, El-Sheikh MA, Ahmad P, Fu H, Wang Z. The induction of polyamines metabolism pathway and membrane stability with silicon alleviate the vanadium toxicity in pepper plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136665. [PMID: 39647327 DOI: 10.1016/j.jhazmat.2024.136665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
The vanadium (V) toxicity predominantly is the primary limitation in restraining pepper growth. The silicon (Si) in pepper plants induced the transcript level of the polyamines metabolism pathway genes, including the arginase (CbARG), ornithine decarboxylase (CbODC), arginine decarboxylase (CbADC), N-carbamoylputrescine amidase (CbNCA), Spermidine synthase (CbSPDS), copper binding diamine oxidase (CbCuAO) to overcome the V toxicity. The polyamines, including the Spm, Spd, and Put, induced with Si about 41.37 %, 33.12 %, and 27.90 %, respectively, in V stress. Moreover, the Si application decline in the leaf and root V contents, which was around 49.5 % and 40.74 %, respectively, then the V stress plants. The soluble protein, proline, and Si level in root/leaf with Si treatment significantly induced around 55.55/50.22 %, 42.85/55.35 %, and 49.92/85.29 %, respectively, as compared to the V stress. Si also heightened the nitrate reductase (NR), phosphoenolpyruvate carboxylase (PEPC), and malate dehydrogenase (MDH) levels. Our study revealed that Si maintained the PSII integrity and induced PSII efficiency genes. Si preserves the membrane stability, as evidenced by less accumulation in EL, H2O2, and MDA levels. The Si also induces the AsA-GSH to eliminate the reactive oxygen species (ROS) in the pepper plants. In summary, our research elucidated that Si addition improved pepper plants' tolerance to V toxicity.
Collapse
Affiliation(s)
- Naveed Mushtaq
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Ahsan Altaf
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huangying Shu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Huizhen Fu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Jia R, Huang X, Dang P, Chen Q, Zhong S, Fan F, Wang C, Song J, Chorover J, Rensing C. Fe(III) reduction mediates vanadium release and reduction in vanadium contaminated paddy soil under different organic amendments. ENVIRONMENT INTERNATIONAL 2024; 193:109073. [PMID: 39442321 DOI: 10.1016/j.envint.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Vanadium(V) contaminated soil is abundant in iron(Fe) oxides due to co-occurrence of V and Fe bearing minerals. However, biogeochemical transformation of redox-active V and Fe in soil, and the bacteria involved, has remained less investigated. This study explored the extent to which microbial mediated organic decomposition coupled to Fe(III) reduction contributed to V(V) release/reduction in V-contaminated paddy soil under different organic amendments. Soil flooding decreased toxic reducible V while increased less toxic oxidizable V. Glucose and straw promoted V(V) release with temporarily increasing V(V) concentration by 73.59-106.34 mg/kg compared to the control treatment and subsequently promoted V(V) reduction with decreasing V(V) to concentrations eventually similar to the control treatment. Biochar incorporation under glucose and straw amendments moderately alleviated V(V) release. The significantly positive correlation between Fe(II) and V(V) concentrations during the V solubilization process indicated a temporal coupling of Fe(III) reduction and V(V) release. Clostridium and Massilia mediated Fe(III) reductive dissolution and V(V) release, while Anaeromyxobacter, Sphingomonas, Bryobacter, Acidobacteriaceae and Anaerolineaceae contributed to V(V) reduction. This study provides a deeper understanding of V biotransformation coupled to Fe and C cycling and suggests a remediation strategy for V-contaminated soils via regulating Fe(III) reduction to weaken V(V) release or to promote V(V) reduction.
Collapse
Affiliation(s)
- Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China; College of Geography and Resources, Sichuan Normal University, Chengdu, Sichuan Province 610101, PR China
| | - Xiaoxuan Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; College of Geography and Resources, Sichuan Normal University, Chengdu, Sichuan Province 610101, PR China
| | - Panpan Dang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Qiaolin Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Sining Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China
| | - Fangmei Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, PR China; College of Geography and Resources, Sichuan Normal University, Chengdu, Sichuan Province 610101, PR China
| | - Chao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, PR China
| | - Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, PR China.
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, PR China.
| |
Collapse
|
3
|
Wang Y, Duan W, Lv C, Wei Z, Zhu Y, Yang Q, Liu Y, Shen Z, Xia Y, Duan K, Quan L. Citric Acid and Poly-glutamic Acid Promote the Phytoextraction of Cadmium and Lead in Solanum nigrum L. Grown in Compound Cd-Pb Contaminated Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:37. [PMID: 36607448 DOI: 10.1007/s00128-022-03682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weidong Duan
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Chao Lv
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhuangzhuang Wei
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Yanping Zhu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Yang
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Ying Liu
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Lingtong Quan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
4
|
Zhou D, Liang M, Xia Y, Li C, Huang M, Peng S, Huang Y. Reduction mechanisms of V 5+ by vanadium-reducing bacteria in aqueous environments: Role of different molecular weight fractionated extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158394. [PMID: 36058324 DOI: 10.1016/j.scitotenv.2022.158394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Extracellular polymeric substances (EPS) are high-molecular polymers secreted by microbes and play essential roles in metallic biogeochemical cycling. Previous studies demonstrated the reducing capacity of the functional groups on EPS for metal reduction. However, the roles of different EPS components in vanadium speciation and their responsible reducing substances for vanadium reduction are still unknown. In this study, the EPS of Bacillus sp. PFYN01 was fractionated via ultrafiltration into six components with different kDa (EPS>100, EPS100-50, EPS50-30, EPS30-10, EPS10-3, and EPS<3). Batch reduction experiments of the intact cells, EPS-free cells, the pristine and fractionated EPS with V5+ were conducted and characterized. The results demonstrated that the extracellular reduction of V5+ into V4+ by EPS was the major reduction process. Among the functional groups in EPS, C=O/C-N of amide in protein/polypeptide and CO of carboxyl in fulvic acid-like substances might act as the reductants for V5+, while CO in polysaccharide molecules and PO in phosphodiester played a key role in the adsorption process. The intracellular reduction was via translocating V5+ into the cells and releasing V4+ by the intracellular reductases. The reducing capacity of the fractionated EPS followed a sequence of EPS<3 > EPS10-3 > EPS50-30 > EPS100-50 > EPS30-10 > EPS>100. The small molecules of fulvic acid-like substances and amino acids were responsible for the high reducing capacity of EPS<3. EPS>100 had the lowest reducing capacity due to its macromolecular structure decreasing the exposure of the reactive sites. In addition to reduction, those intermediate EPS components may also have supporting functions, such as connecting protein skeletons and increasing the specific surface area of EPS. Therefore, the diverse effects of the EPS components cannot be neglected in vanadium biogeochemical cycling.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Mengmeng Liang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yonglian Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Chao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingzheng Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Shuming Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
5
|
Kumar S, Wang M, Liu Y, Zhu Z, Fahad S, Qayyum A, Zhu G. Vanadium Stress Alters Sweet Potato ( Ipomoea batatas L.) Growth, ROS Accumulation, Antioxidant Defense System, Stomatal Traits, and Vanadium Uptake. Antioxidants (Basel) 2022; 11:antiox11122407. [PMID: 36552615 PMCID: PMC9774804 DOI: 10.3390/antiox11122407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Vanadium (V) is a heavy metal found in trace amounts in many plants and widely distributed in the soil. This study investigated the effects of vanadium concentrations on sweet potato growth, biomass, root morphology, photosynthesis, photosynthetic assimilation, antioxidant defense system, stomatal traits, and V accumulation. Sweet potato plants were grown hydroponically and treated with five levels of V (0, 10, 25, 50, and 75 mg L-1). After 7 days of treatment, V content at low concentration (10 mg L-1) enhanced the plant growth and biomass; in contrast, drastic effects were observed at 25, 50, and 75 mg L-1. Higher V concentrations negatively affect the relative water content, photosynthetic assimilation, photosynthesis, and root growth and reduce tolerance indices. The stomatal traits of sweet potato, such as stomatal length, width, pore length, and pore width, were also decreased under higher V application. Furthermore, V concentration and uptake in the roots were higher than in the shoots. In the same way, reactive oxygen species (ROS) production (hydrogen peroxide), lipid peroxidation (malondialdehyde), osmolytes, glutathione, and enzymes (catalase and superoxide dismutase) activities were increased significantly under V stress. In conclusion, V at a low level (10 mg L-1) enhanced sweet potato growth, and a higher level of V treatment (25, 50, and 75 mg L-1) had a deleterious impact on the growth, physiology, and biochemical mechanisms, as well as stomatal traits of sweet potato.
Collapse
Affiliation(s)
- Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Mengzhao Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (G.Z.); (M.W.)
| | - Yonghua Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- Correspondence: (G.Z.); (M.W.)
| |
Collapse
|