1
|
Huo J, Song B, Lin X, Riaz M, Zhao X, Liu S, She Q. Ecological characteristics of sugar beet plant and rhizosphere soil in response to high boron stress: A study of the remediation potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120655. [PMID: 38513589 DOI: 10.1016/j.jenvman.2024.120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.
Collapse
Affiliation(s)
- Jialu Huo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Xiaochen Lin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoyu Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangxuan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Qingqing She
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
2
|
Yadav R, Singh G, Santal AR, Singh NP. Omics approaches in effective selection and generation of potential plants for phytoremediation of heavy metal from contaminated resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117730. [PMID: 36921476 DOI: 10.1016/j.jenvman.2023.117730] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Soil and water pollution, rapid industrialization, contaminated irrigation-water, increased waste-production and surge in agricultural land leads to the accumulation of Heavy Metals (HM) with time. HM contamination has raised concern over the past years and new remediation strategies are required to deal with it. HM-contaminated soil is often used for the production of food, which makes a gateway for toxic metals into the food-chain, thereby affecting food security and human health. To avoid HM-toxicity, decontamination of important resources is essential. Therefore, exploring phytoremediation for the removal, decomposition and detoxification of hazardous metals from HM-contaminated sites is of great significance. Hyper-accumulator plants can efficiently remove HMs. However, despite many hyper-accumulator plant species, there is a research gap in the studies of phytotechnology. Hence biotechnological efforts advocating omics studies i.e. genomics, transcriptomics, proteomics, metabolomics and phenomics are in order, the purpose being to select and enhance a plant's potential for the process of phytoremediation to be more effective. There is a need to study newly developed high-efficiency hyper-accumulator plants as HM-decontaminator candidates for phytoremediation and phytomining. Therefore, this review focuses on various strategies and bio-technological methods for the removal of HM contaminants from sites, with emphasis on the advancement of phytoremediation, along with applications in cleaning up various toxic pollutants.
Collapse
Affiliation(s)
- Renu Yadav
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Gagandeep Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
3
|
Ma M, Chen Y, Su R, Liu Z, He J, Zhou W, Gu M, Yan M, Li Q. In situ synthesis of Fe-N co-doped carbonaceous nanocomposites using biogas residue as an effective persulfate activator for remediation of aged petroleum contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128963. [PMID: 35486999 DOI: 10.1016/j.jhazmat.2022.128963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Persulfate (PS)-based chemical oxidation is an effective method for the remediation of petroleum-contaminated soils, but higher concentrations of PS (3-40%) may lead to soil acidification (pH decreased by 1.8-6.2 units) and affect the microbial communities. In this study, Fe/N co-doped carbonaceous nanocomposites (Fe-N @ CN) that can efficiently activate PS were developed from biogas residue for the remediation of petroleum-contaminated soil. The as-obtained Fe-N@CN displayed that the Fe-based nanoparticles were encapsulated in graphitic nanosheets, with Fe3C and FeN0.0760 as the main bonding modes. The removal efficiency of total petroleum hydrocarbons (TPHs) reached 73.14% in 3 days with a PS dose of 2% and catalyst dose of 0.4%, and increased by 15.8% on adding 30 mmol/kg of β-cyclodextrin. The free-radical quenching experiment and electron paramagnetic resonance revealed that SO4·-,·OH, O2·-, and 1O2 were involved in the removal of TPHs. Because of the low PS dosage, the remediation process had no significant effect on the soil pH. During the remediation process, soil catalase activity was enhanced and then recovered, whereas the soil bacterial community, reflected by the operational taxonomic unit values, decreased and then recovered. TPH-degrading bacteria were produced in the Fe-N@CN/PS/soil system after chemical oxidation, further contributing to soil remediation.
Collapse
Affiliation(s)
- Mengyu Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Yi Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ruidian Su
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Zhen Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Jinkai He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan 250100, PR China
| | - Meixia Gu
- Sinopec Petroleum Engineering & Design Co., Ltd., Dongying 257100, PR China
| | - Maolu Yan
- Shandong Eco-Homeland Environmental Protection Co., Jinan 250000, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
4
|
Kalia A, Sharma S, Semor N, Babele PK, Sagar S, Bhatia RK, Walia A. Recent advancements in hydrocarbon bioremediation and future challenges: a review. 3 Biotech 2022; 12:135. [PMID: 35620568 PMCID: PMC9127022 DOI: 10.1007/s13205-022-03199-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/04/2022] [Indexed: 11/01/2022] Open
Abstract
Petrochemicals are important hydrocarbons, which are one of the major concerns when accidently escaped into the environment. On one hand, these cause soil and fresh water pollution on land due to their seepage and leakage from automobile and petrochemical industries. On the other hand, oil spills occur during the transport of crude oil or refined petroleum products in the oceans around the world. These hydrocarbon and petrochemical spills have not only posed a hazard to the environment and marine life, but also linked to numerous ailments like cancers and neural disorders. Therefore, it is very important to remove or degrade these pollutants before their hazardous effects deteriorate the environment. There are varieties of mechanical and chemical methods for removing hydrocarbons from polluted areas, but they are all ineffective and expensive. Bioremediation techniques provide an economical and eco-friendly mechanism for removing petrochemical and hydrocarbon residues from the affected sites. Bioremediation refers to the complete mineralization or transformation of complex organic pollutants into the simplest compounds by biological agents such as bacteria, fungi, etc. Many indigenous microbes present in nature are capable of detoxification of various hydrocarbons and their contaminants. This review presents an updated overview of recent advancements in various technologies used in the degradation and bioremediation of petroleum hydrocarbons, providing useful insights to manage such problems in an eco-friendly manner.
Collapse
Affiliation(s)
- Arun Kalia
- Center for Environmental Science and Technology, Central University of Punjab, Bhatinda, 151001 India
| | - Samriti Sharma
- Department of Biotechnology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, India
| | - Nisha Semor
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005 India
| | - Piyoosh Kumar Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003 Uttar Pradesh India
| | - Shweta Sagar
- Department of Microbiology, College of Basic Sciences, CSKHPKV, Palampur, 176062 Himachal Pradesh India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005 India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSKHPKV, Palampur, 176062 Himachal Pradesh India
| |
Collapse
|