1
|
Alves Senabio J, Correia da Silva R, Guariz Pinheiro D, Gomes de Vasconcelos L, Soares MA. The pesticides carbofuran and picloram alter the diversity and abundance of soil microbial communities. PLoS One 2024; 19:e0314492. [PMID: 39591478 PMCID: PMC11594414 DOI: 10.1371/journal.pone.0314492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Many countries widely use pesticides to increase crop productivity in agriculture. However, their excessive and indiscriminate use contaminates soil and other environments and affects edaphic microbial communities. We aimed to examine how the pesticides carbofuran and picloram affect the structure and functionality of soil microbiota using cultivation-independent methods. Total DNA was extracted from microcosms (treated or not with pesticides) for amplification and metabarcoding sequencing for bacteria (16S gene) and fungi (28S gene) using Illumina-MiSeq platform. Data analysis resulted in 6,772,547 valid reads from the sequencing, including 3,450,815 amplicon sequences from the V3-V4 regions of the 16S gene and 3,321,732 sequences from the 28S gene. A total of 118 archaea, 6,931 bacteria, and 1,673 fungi taxonomic operating units were annotated with 97% identity in 24 soil samples. The most abundant phyla were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Chloroflexi, Euryarchaeaota, and Ascomycota. The pesticides reduced the diversity and richness and altered the composition of soil microbial communities and the ecological interactions among them. Picloram exerted the strongest influence. Metabarcoding data analysis from soil microorganisms identified metabolic functions involved in resistance and degradation of contaminants, such as glutathione S-transferase. The results provided evidence that carbofuran and picloram shaped the soil microbial community. Future investigations are required to unravel the mechanisms by which soil microorganisms degrade pesticides.
Collapse
Affiliation(s)
- Jaqueline Alves Senabio
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Rafael Correia da Silva
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Daniel Guariz Pinheiro
- Faculty of Agricultural and Veterinary Sciences, Paulista State University, Jaboticabal, SP, Brazil
| | | | - Marcos Antônio Soares
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
2
|
Zang C, Wang X, Cheng P, Liu L, Guo X, Wang H, Lou Z, Lei J, Wang W, Wang Y, Gong M, Liu H. Evaluation of the evolutionary genetics and population structure of Culex pipiens pallens in Shandong province, China based on knockdown resistance (kdr) mutations and the mtDNA-COI gene. BMC Genomics 2023; 24:145. [PMID: 36964519 PMCID: PMC10039558 DOI: 10.1186/s12864-023-09243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China. METHODS Adult Culex females were collected from Shandong province and subjected to morphological identification under a dissection microscope. Genomic DNA were extracted from the collected mosquitoes, the Vgsc gene were amplified via PCR and sequenced to assess kdr allele frequencies, intron polymorphisms, and kdr codon evolution. In addition, population genetic diversity and related population characteristics were assessed by amplifying and sequencing the mitochondrial cytochrome C oxidase I (COI) gene. RESULTS Totally, 263 Cx. p. pallens specimens were used for DNA barcoding and sequencing analyses to assess kdr allele frequencies in nine Culex populations. The kdr codon L1014 in the Vgsc gene identified two non-synonymous mutations (L1014F and L1014S) in the analyzed population. These mutations were present in the eastern hilly area and west plain region of Shandong Province. However, only L1014F mutation was detected in the southern mountainous area and Dongying city of Shandong Province, where the mutation frequency was low. Compared to other cities, population in Qingdao revealed significant genetic differentiation. Spatial kdr mutation patterns are likely attributable to some combination of prolonged insecticide-mediated selection coupled with the genetic isolation of these mosquito populations. CONCLUSIONS These data suggest that multiple kdr alleles associated with insecticide resistance are present within the Cx. p. pallens populations of Shandong Province, China. The geographical distributions of kdr mutations in this province are likely that the result of prolonged and extensive insecticide application in agricultural contexts together with frequent mosquito population migrations. In contrast, the low-frequency kdr mutation detected in central Shandong Province populations may originate from the limited selection pressure in this area and the relative genetic isolation. Overall, the study compares the genetic patterns revealed by a functional gene with a neutral marker and demonstrates the combined impact of demographic and selection factors on population structure.
Collapse
Affiliation(s)
- Chuanhui Zang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, People's Republic of China
| | - Peng Cheng
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Lijuan Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Xiuxia Guo
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Haifang Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Ziwei Lou
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Jingjing Lei
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Wenqian Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Yiting Wang
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China
| | - Maoqing Gong
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| | - Hongmei Liu
- Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Liu H, Tang H, Ni X, Zhang J, Zhang X. Epichloë endophyte interacts with saline-alkali stress to alter root phosphorus-solubilizing fungal and bacterial communities in tall fescue. Front Microbiol 2022; 13:1027428. [PMID: 36620058 PMCID: PMC9815497 DOI: 10.3389/fmicb.2022.1027428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Epichloë endophytes, present in aboveground tissues, modify belowground microbial community. This study was conducted to investigate endophyte (Epichloë coenophialum) associated with tall fescue (Lolium arundinaceum) interacted with an altered saline-alkali stress (0, 200 and 400 mmol/l) to affect the belowground phosphorus solubilizing microorganisms including phosphorus solubilizing fungi (PSF) and bacteria (PSB). We found that a significant interaction between E. coenophialum and saline-alkali stress occurred in the diversity and composition of PSF in tall fescue roots. Under saline-alkali stress conditions (200 and 400 mmol/l), E. coenophialum significantly increased the PSF diversity and altered its composition in the roots, decreasing the relative abundance of dominant Cladosporium and increasing the relative abundance of Fusarium. However, there was no significant interaction between E. coenophialum and saline-alkali stress on the PSB diversity in tall fescue roots. E. coenophialum significantly reduced the diversity of PSB in the roots, and E. coenophialum effects did not depend on the saline-alkali stress treatment. Structural equation modeling (SEM) showed that E. coenophialum presence increased soil available phosphorus concentration under saline-alkali stress primarily by affecting PSF diversity instead of the diversity and composition of PSB.
Collapse
|