1
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
2
|
de Souza AR, Prato A, Franca W, Santos S, Lima LD, Alves DA, Bernardes RC, Santos EF, do Nascimento FS, Lima MAP. A predatory social wasp does not avoid nestmates contaminated with a fungal biopesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103851-103861. [PMID: 37695481 DOI: 10.1007/s11356-023-29770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Amanda Prato
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Wilson Franca
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Sircio Santos
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luan Dias Lima
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Denise Araujo Alves
- Department of Entomology and Acarology, University of São Paulo, São Paulo, Brazil
| | | | - Eduardo Fernando Santos
- Department of Zoology E Botany, Sao Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| | - Fábio Santos do Nascimento
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | | |
Collapse
|
3
|
Silva SAM, Prata JC, Dias-Pereira P, Rodrigues ACM, Soares AMVM, Sarmento RA, Rocha-Santos T, Gravato C, Patrício Silva AL. Microplastics altered cellular responses, physiology, behaviour, and regeneration of planarians feeding on contaminated prey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162556. [PMID: 36870489 DOI: 10.1016/j.scitotenv.2023.162556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Freshwater benthic environments are among the major sinks of microplastics (MPs, < 5 mm) sourced on inland anthropogenic activities. The ecotoxicological effects of MPs on benthic macroinvertebrates have been assessed preferably in collectors, shredders, and filter-feeders, but resulting in insufficient knowledge on the potential trophic transfer and its effects on macroinvertebrates with predator behaviour such as planarians. This work evaluated the behavioural (feeding, locomotion), physiological (regeneration) and biochemical responses (aerobic metabolism, energy reserves, oxidative damage) of the planarian Girardia tigrina after consuming contaminated live prey Chironomus riparius larvae previously exposed to microplastics of polyurethane (PU-MPs; 7-9 μm in size; 375 mg PU-MPs/kg). After the feeding period (3 h), planarians consumed 20 % more contaminated prey than uncontaminated prey, probably related to increased curling/uncurling movements of larvae (that might be more appellative to planarians). Histological analysis revealed planarians' limited intake of PU-MPs, mainly detected near the pharynx. The consumption of contaminated prey (and intake of PU-MPs) did not result in oxidative damage but slightly increased the aerobic metabolism and energy reserves which show that the consumption of more prey was sufficient to cope with the potential adverse effects of internalized MPs. Moreover, no effects were observed in the locomotion of planarians in good agreement with the hypothesis of sufficient energy acquired by the exposed planarians. Despite the previous, it seems that the energy acquired was not allocated for planarians' regeneration since a significant delay in the regeneration of the auricles was observed for planarians feeding on contaminated prey. Therefore, further studies should be performed considering the potential long-term effects (i.e., reproduction/fitness) and the effects of MPs that might result from continuous feeding on contaminated prey, representing a more realistic exposure scenario.
Collapse
Affiliation(s)
- Sara A M Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana C Prata
- TOXRUN-Toxicology Research Unit, CESPU, University Institute of Health Sciences (IUCS), 3810-193 Gandra, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, Porto University (ICBAS-UP), 4050-313 Porto, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins (UFT), Campus de Gurupi, Gurupi, Tocantins 77402-970, Brazil
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande 1749-016 Lisboa, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Zhu H, Guan X, Pu L, Shen L, Hua H. Acute toxicity, biochemical and transcriptomic analysis of Procambarus clarkii exposed to avermectin. PEST MANAGEMENT SCIENCE 2023; 79:206-215. [PMID: 36129128 DOI: 10.1002/ps.7189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pesticides are extensively applied globally. Pesticide residues induce calamitous effects on the environment and untargeted organisms. Public concerns for the safety of freshwater organisms and the challenges posed by aquatic contaminants remain high. In the present study, the acute toxicity of avermectins (AVMs) to the crayfish, Procambarus clarkii was evaluated. We also evaluated the potential effects of AVM on the biochemical and transcriptomic status of the hepatopancreas and gastrointestinal tract in P. clarkii. RESULTS The 24, 48, 72, 96 h median lethal concentrations (LC50 ) of AVM on crayfish were 2.626, 1.162, 0.723, 0.566 mg L-1 , respectively. The crayfish were then exposed to 0.65 mg L-1 of AVM for 96 h. AVM significantly altered biochemical parameters including AChE and CAT activities in the hepatopancreas, and AChE, SOD and Na + -K + -ATPase activities in the gastrointestinal tract at several time points. Furthermore, transcriptomic analysis identified 953 and 1851 differentially-expressed genes (DEGs) in the hepatopancreas and gastrointestinal tract, respectively. KEGG enrichment showed that the gene expression profiles of the hepatopancreas and gastrointestinal tract were distinct from each other. The DEGs in the hepatopancreas were mostly enriched with stress-response pathways, while the majority of the DEGs in the gastrointestinal tract belonged to metabolism-related pathways. CONCLUSION We demonstrated that the AVM induced acute toxicity, oxidative stress, osmoregulation disturbance, neurotoxicity and transcriptome imbalance in crayfish. These findings unraveled the detrimental effects of AVMs exposure on crayfish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongyuan Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Guan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Pu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyang Shen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|