1
|
Li W, Zu B, Li J, Li L, Li J, Mei X. Microplaastics as potential bisphenol carriers: role of adsorbents, adsorbates, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27953-8. [PMID: 37249766 DOI: 10.1007/s11356-023-27953-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) are widely found in the environment and can act as carriers for various toxic substances, promoting their diffusion and bioenrichment. Accordingly, it is necessary to investigate the transfer of MPs between the environment and organisms. This study investigated the adsorption potential of four types of MPs, namely polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC), for bisphenol (BP) A, B, F, and S (BPA, BPB, BPF, and BPS, respectively). The results showed that all four types of MP could act as environmental carriers of BP. PA had the highest BPA adsorption capability, with a value of 109.0 ± 39.93 μg·g-1, followed by PS (89.24 ± 26.12 μg·g-1), PVC (53.08 ± 15.32 μg·g-1), and PP (41.83 ± 11.51 μg·g-1).Thepolymer type, SSA, and surface functional groups were the main factors affecting the BP adsorption capacity of MPs. The concentration, hydrophobicity, and dissociation ability of BPs also substantially affected their adsorption behavior. The adsorption efficiency of different BPs on the same MPs ranged from 37.4 ± 3.7% to 59.1 ± 2.8%. The adsorption capacity of BPs on MPs decreased with increasing temperature. Salt ions in the solution significantly enhanced BP partitioning in the solid phase owing to the salting-out effect. Additionally, the adsorption of BPs on MPs was pH dependent. Higher pH values increased electrostatic repulsion, which decreased the adsorption capacity. These results demonstrate that MPs can serve as BP carriers in the environment and their potential BP loads might be considerably greater than that of BP additives used during plastic production.
Collapse
Affiliation(s)
- Wang Li
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Bo Zu
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Jian Li
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Lei Li
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jiawen Li
- Chongqing Research Academy of Ecology and Environmental Sciences, Chongqing, 401147, China
| | - Xueyu Mei
- Chongqing Yi Da Environmental Protection Engineering Co., Ltd., Chongqing, 400060, China
| |
Collapse
|
2
|
Song Y, Wang Y, Han R. Adsorption of chlorophenols on activated pine sawdust-activated carbon from solution in batch mode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31294-31308. [PMID: 36445525 DOI: 10.1007/s11356-022-24403-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In this work, a novel adsorbent, activated carbon (PSAC) developed by the activation of pine sawdust's pyrolytic carbon (PSPC), is applied to adsorb 2,4-dichlorophenol (2,4-DCP) and 4-chlorophenol (4-CP). The optimized preparation conditions of PSAC were presented. The results revealed that equilibrium adsorption capacity (qe) of PSAC was notably enhanced up to threefold compared with PSPC. The adsorbents were characterized by a variety of techniques such as SEM, XRD, FT-IR, and elemental analysis. The key factors (such as adsorbent dosage, pH, salt concentration, temperature, and contact time) influencing the adsorption process were also studied. The adsorption quantities of PSAC for 2,4-DCP and 4-CP were 135.7 mg·g-1 and 77.3 mg·g-1, respectively. The equilibrium adsorption of 4-DCP and 4-CP was suitable to be predicted by the Freundlich and Koble-Corrigan models, while kinetic process was better described by the pseudo-second-order kinetic model and Elovich equation. The process was spontaneous. After repeated regeneration of PSAC with ethanol, the adsorption capacity of PSAC was not significantly reduced, indicating that PSAC can be recycled by regeneration after adsorption of 4-CP. This work provides a viable method to use activated carbon as an effective adsorbent for pollutant removal.
Collapse
Affiliation(s)
- Yuwei Song
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Yuanyuan Wang
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Zhengzhou University, No 100 of Ke Xue Road, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
3
|
Kataria N, Bhushan D, Gupta R, Rajendran S, Teo MYM, Khoo KS. Current progress in treatment technologies for plastic waste (bisphenol A) in aquatic environment: Occurrence, toxicity and remediation mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120319. [PMID: 36183872 DOI: 10.1016/j.envpol.2022.120319] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol-A (BPA) is a type of endocrine disrupting compound (EDC) that is being widely used in the production of polycarbonate and epoxy resins. In the last few years, human exposure to BPA has been extensively high due to the continuous increment in the Annual Growth Rate (AGR) of the BPA global market. The presence and transportation of BPA in the environment could cause serious damage to aquatic life and human health. This paper reviewed the literature on the exposure and toxicity mechanisms of BPA and advanced analytical techniques for the detection of BPA in the environment and human beings. The study indicated that BPA can cause damaging effects on numerous tissues and organs, including the reproductive system, metabolic dysfunction, respiratory system, immune system and central nervous system. On the basis of reported studies on animals, it appears that the exposure of BPA can be carcinogenic and responsible for causing a variety of cancers like ovarian cancer, uterine cancer, prostate cancer, testicular cancer, and liver cancer. This review paper focused mainly on the current progress in BPA removal technologies within last ten years (2012-2022). This paper presents a comprehensive overview of individual removal technologies, including adsorption, photocatalysis/photodegradation, ozonation/advance oxidation, photo-fenton, membranes/nanofilters, and biodegradation, along with removal mechanisms. The extensive literature study shows that each technology has its own removal mechanism and their respective limitations in BPA treatment. In adsorption and membrane separation process, most of BPA has been treated by electrostatic interaction, hydrogen boning and π-π interations mechanism. Whereas in the degradation mechanism, O* and OH* species have played a major role in BPA removal. Some factors could alter the removal potential and efficiency of BPA removal. This review paper will provide a useful guide in providing directions for future investigation to address the problem of BPA-containing wastewater treatment.
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Divya Bhushan
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Renuka Gupta
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Michelle Yee Mun Teo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Rout DR, Jena HM. Synthesis of novel epichlorohydrin cross-linked β-cyclodextrin functionalized with reduced graphene oxide composite adsorbent for treatment of phenolic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73444-73460. [PMID: 35622280 DOI: 10.1007/s11356-022-21018-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
A novel composite consisting reduced graphene oxide-functionalized beta-cyclodextrin epichlorohydrin polymer (RGO-βCD-ECH) was synthesized for the treatment of phenolic wastewater. Batch study of phenolic pollutants (2,4-dichlorophenol, 2-chlorophenol, and phenol) was analyzed using the synthesized composite as an adsorbent from an aqueous solution. The optimized parameters were temperature 25 °C, adsorption time 60 min, solution pH 7, and dosage 0.25 g/L. The isotherm data were more suitably fitted by the Langmuir isotherm model. The maximum uptake for 2,4-dichlorophenol, phenol, and 2-chlorophenol was 702.853, 659.475, and 674.155 mg/g, respectively, at 25 ± 1 °C. The kinetic data for all the phenolic pollutants follow the pseudo-second-order model, and the rate was controlled by film diffusion. Thermodynamic data revealed that the process of removing phenolic pollutants is spontaneous and endothermic. The composite can be used up to five cycles with a small reduction in the removal. Adsorption performance of the synthesized composite for synthetic industrial effluents shows that up to 78% removal occurred in 60 min adsorption time. Based on the remarkably rapid adsorption and high adsorption capacity, the synthesized composite can be considered an efficient adsorbent for treating phenolic pollutants from wastewater.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela, 769008, Orissa, India.
| |
Collapse
|
5
|
Kani AN, Dovi E, Aryee AA, Han R, Qu L. Efficient removal of 2,4-D from solution using a novel antibacterial adsorbent based on tiger nut residues: adsorption and antibacterial study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64177-64191. [PMID: 35471759 DOI: 10.1007/s11356-022-20257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
We engineered a tiger nut residue (TNR, a low-cost agricultural waste material) through a facile and simple process to take advantage of the introduced functional groups (cetylpyridinium chloride, CPC) in the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in batch mode and further investigated its impingement on bacterial growth in a yeast-dextrose broth. The surface characterizations of the adsorbent were achieved through Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller method (BET), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The batch adsorption studies revealed that solution pH, adsorbent dose, temperature, and salt affected the adsorptive capacity of TNR-CPC. The equilibrium data were best fitted by Langmuir isotherm model with a maximum monolayer adsorption capacity of 90.2 mg g-1 at 318 K and pH 3. Pseudo-second-order model best fitted the kinetics data for the adsorption process. Physisorption largely mediated the adsorption system with spontaneity and a shift in entropy of the aqueous solid-solute interface reflecting decreased randomness with an exothermic character. TNR-CPC demonstrated a good reusability potential making it highly economical and compares well with other adsorbents for decontamination of 2,4-D. The adsorption of 2,4-D proceeded through a probable trio-mechanism; electrostatic attraction between the carboxylate anion of 2,4-D and the pyridinium cation of TNR-CPC, hydrogen bonding between the hydroxyl (-OH) group inherent in the TNR and the carboxyl groups in 2,4-D and a triggered π-π stacking between the benzene structures in the adsorbate and the adsorbent. TNR-CPC reported about 99% inhibition rate against both gram-positive S. aureus and gram-negative E. coli. It would be appropriate to investigate the potential of TNR-CPC as a potential replacement to the metal oxides used in wastewater treatment for antibacterial capabilities, and its effects against airborne bacteria could also be of interest.
Collapse
Affiliation(s)
- Alexander Nti Kani
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Evans Dovi
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Aaron Albert Aryee
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|