1
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
2
|
Song X, Zhang H, Zhang J, Sun R, Zhao J, Zhao H, Hu J, Liu Y. Removal of Ciprofloxacin from Water by a Potassium Carbonate-Activated Sycamore Floc-Based Carbonaceous Adsorbent: Adsorption Behavior and Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5323-5332. [PMID: 37027513 DOI: 10.1021/acs.langmuir.2c03330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, a porous carbonaceous adsorbent was prepared from sycamore flocs by pyrolysis method and K2CO3 activation. The effects of preparative conditions of the material on its adsorptive property were explored. The optimal material (SFB2-900) was obtained with a K2CO3/biochar mass ratio of 2:1 at an activation temperature of 900 °C, possessing a huge surface specific area (1651.27 m2/g). The largest adsorption capacity for ciprofloxacin on SFB2-900 was up to 430.25 mg/g. The adsorption behavior was well described by the pseudo-second-order kinetic model and the Langmuir isothermal model. Meanwhile, this process was spontaneous and exothermic. The obtained material showed excellent adsorption performance in the conditions of diverse pH range, ionic strength, and water quality of the solution. The optimum adsorption conditions (pH = 7.01, dosage = 0.6 g/L, and C0 = 52.94 mg/L) determined based on the response surface methodology were in accordance with the practical validation consequences. The good regeneration effect of SFB2-900 manifested that this material had great practical application potential. Combining the experimental results and density functional theory calculation results, the adsorption mechanisms mainly included pore filling, π-π EDA interactions, electrostatic interactions, and H-bonds. The material could be regarded as a novel and high-efficiency adsorbent for antibiotics. Additionally, these findings also provide reference for the reuse of waste biomass in water treatment.
Collapse
Affiliation(s)
- Xue Song
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan 450001, China
| | - Hongkui Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jie Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Runchao Sun
- Henan Academy of Sciences Institute of Energy Co. Ltd., Zhengzhou 450008, China
| | - Jihong Zhao
- Henan Radio and Television University, Zhengzhou, Henan 450001, China
| | - Hailiang Zhao
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Junkai Hu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Zhengzhou Key Laboratory of Organic Waste Resource Utilization, Zhengzhou, Henan 450001, China
| |
Collapse
|
3
|
Ke Y, Zhu X, Si S, Zhang T, Wang J, Zhang Z. A Novel Adsorbent of Attapulgite & Carbon Composites Derived from Spent Bleaching Earth for Synergistic Removal of Copper and Tetracycline in Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1573. [PMID: 36674334 PMCID: PMC9865348 DOI: 10.3390/ijerph20021573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Simultaneously eliminating tetracycline (TC) and copper (Cu-II) from wastewater was investigated by applying a novel adsorbent fabricated by transforming spent bleaching earth (SBE) into attapulgite & carbon composites (A&Cs). Pyrolysis temperature for A&Cs preparation exhibited a positive effect on Cu(II) adsorption, while the AC500 possessed the greatest performance for TC remediation. Interestingly, a synergistic effect instead of competitive adsorption occurred between Cu(II) and TC under the combined binary system, as both TC and Cu(II) adsorption amount on A&C500 increased more than that in the single system, which could be mainly attributed to the bridge actions between the TC and Cu(II). In addition, hydrogen bonding, ᴨ-ᴨ EDA interaction, pore-filling and complexation exerted significant roles in the adsorption process of TC and Cu(II). In general, this study offered a new perspective on the regeneration of livestock and poultry industry wastewater polluted with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Shaocheng Si
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Ting Zhang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| | - Ziye Zhang
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| |
Collapse
|