1
|
Zaater A, Serhoud MO, Ben Amor I, Zeghoud S, Hemmami A, Rebiai A, Bouras Y, Laiche AT, Alsalme A, Cornu D, Bechelany M, Barhoum A. Exploring the potential of a Ephedra alata leaf extract: Phytochemical analysis, antioxidant activity, antibacterial properties, and green synthesis of ZnO nanoparticles for photocatalytic degradation of methylene blue. Front Chem 2024; 12:1367552. [PMID: 38449480 PMCID: PMC10914993 DOI: 10.3389/fchem.2024.1367552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Ephedra alata leaf extracts have therapeutic properties and contain various natural compounds known as phytochemicals. This study assessed the phytochemical content and antioxidant effects of a Ephedra alata leaf extract, as well as zinc oxide (ZnO) nanoparticle production. The extract contained phenolic acids, including vanillic acid, chlorogenic acid, gallic acid, p-coumaric acid, vanillin and rutin. Its total phenolic content and total flavonoid content were 48.7 ± 0.9 mg.g-1 and 1.7 ± 0.4 mg.g-1, respectively. The extract displayed a DPPH inhibition rate of 70.5%, total antioxidant activity of 49.5 ± 3.4 mg.g-1, and significant antimicrobial activity toward Gram-positive and negative bacteria. The synthesized ZnO nanoparticles had spherical shape, crystallite size of 25 nm, particle size between 5 and 30 nm, and bandgap energy of 3.3 eV. In specific conditions (90 min contact time, pH 7, and 25°C), these nanoparticles efficiently photodegraded 87% of methylene blue, suggesting potential applications for sustainable water treatment and pollution control.
Collapse
Affiliation(s)
- Abdelmalek Zaater
- Biodiversity Laboratory and Application of Biotechnology in Agriculture, University of El Oued, El Oued, Algeria
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
| | - Mohammed Oualid Serhoud
- Laboratory of Community and Family, University of Batna 1, Batna, Algeria
- Department of Sociology and Demography, Faculty of Humanities and Social Sciences, University of Batna 1, Batna, Algeria
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued, Algeria
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Amira Hemmami
- Biodiversity Laboratory and Application of Biotechnology in Agriculture, University of El Oued, El Oued, Algeria
- Department of Biology, Faculty of Natural Science and Life, University of El Oued, El Oued, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of El Oued, El Oued, Algeria
- Chemistry Department, Faculty of Exact Sciences, University of El Oued, El Oued, Algeria
| | - Yacine Bouras
- Department of Biology, Faculty of Natural Science and Life, University of El Oued, El Oued, Algeria
- Laboratory Biology, Environment and Health (LBEH), University of El Oued, El Oued, Algeria
| | - Ammar Touhami Laiche
- Biodiversity Laboratory and Application of Biotechnology in Agriculture, University of El Oued, El Oued, Algeria
- Department of Biology, Faculty of Natural Science and Life, University of El Oued, El Oued, Algeria
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR, University Montpellier, ENSCM, CNRS, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR, University Montpellier, ENSCM, CNRS, Montpellier, France
- Gulf University for Science and Technology, GUST, Hawally, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Mandal AK, Katuwal S, Tettey F, Gupta A, Bhattarai S, Jaisi S, Bhandari DP, Shah AK, Bhattarai N, Parajuli N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12173066. [PMID: 36080103 PMCID: PMC9459703 DOI: 10.3390/nano12173066] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have piqued the curiosity of researchers all over the world due to their extensive biological activity. They are less toxic and biodegradable with the capacity to greatly boost pharmacophore bioactivity. ZnO-NPs are the most extensively used metal oxide nanoparticles in electronic and optoelectronics because of their distinctive optical and chemical properties which can be readily modified by altering the morphology and the wide bandgap. The biosynthesis of nanoparticles using extracts of therapeutic plants, fungi, bacteria, algae, etc., improves their stability and biocompatibility in many biological settings, and its biofabrication alters its physiochemical behavior, contributing to biological potency. As such, ZnO-NPs can be used as an effective nanocarrier for conventional drugs due to their cost-effectiveness and benefits of being biodegradable and biocompatible. This article covers a comprehensive review of different synthesis approaches of ZnO-NPs including physical, chemical, biochemical, and green synthesis techniques, and also emphasizes their biopotency through antibacterial, antifungal, anticancer, anti-inflammatory, antidiabetic, antioxidant, antiviral, wound healing, and cardioprotective activity. Green synthesis from plants, bacteria, and fungus is given special attention, with a particular emphasis on extraction techniques, precursors used for the synthesis and reaction conditions, characterization techniques, and surface morphology of the particles.
Collapse
Affiliation(s)
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Felix Tettey
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Aakash Gupta
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Shankar Jaisi
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Devi Prasad Bhandari
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
| | - Ajay Kumar Shah
- Faculty of Health Sciences, School of Health and Allied Sciences, Pokhara University, Lekhnath 33700, Nepal
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Correspondence: (N.B.); (N.P.)
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44618, Nepal
- Correspondence: (N.B.); (N.P.)
| |
Collapse
|
3
|
Biogenic Synthesis of ZnO Nanoparticles and Their Application as Bioactive Agents: A Critical Overview. REACTIONS 2022. [DOI: 10.3390/reactions3030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zinc oxide is a safe material for humans, with high biocompatibility and negligible cytotoxicity. Interestingly, it shows exceptional antimicrobial activity against bacteria, viruses, fungi, etc., especially when reduced to the nanometer size. As it is easily understandable, thanks to its properties, it is at the forefront of safe antimicrobials in this pandemic era. Besides, in the view of the 2022 European Green Deal announced by the European Commission, even science and nanotechnology are moving towards “greener” approaches to the synthesis of nanoparticles. Among them, biogenic ZnO nanoparticles have been extensively studied for their biological applications and environmental remediation. Plants, algae, fungi, yeast, etc., (which are composed of naturally occurring biomolecules) play, in biogenic processes, an active role in the formation of nanoparticles with distinct shapes and sizes. The present review targets the biogenic synthesis of ZnO nanoparticles, with a specific focus on their bioactive properties and antimicrobial application.
Collapse
|