Han F, Zhang X, Yu J, Xu S, Zhou G, Li S. Study on spatiotemporal dynamic characteristics of precipitation and causes of waterlogging based on a data-driven framework.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;
913:169796. [PMID:
38181961 DOI:
10.1016/j.scitotenv.2023.169796]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The discernible alterations in regional precipitation patterns, influenced by the intersecting factors of urbanization and climate change, exert a substantial impact on urban flood disasters. Based on multi-source precipitation data, a data-driven model fusion framework was constructed to analyze the spatial and temporal dynamic distribution characteristics of precipitation in Beijing. Wavelet analysis method was used to reveal the periodic variation characteristics and multi-scale effects of precipitation, and the machine learning method was used to characterize the spatiotemporal dynamic change pattern of precipitation. Finally, geographical detector was used to explore the causes of waterlogging in Beijing. The research outcomes reveal a disparate distribution of precipitation across the year, with 78 % of the total precipitation occurring during the flood season. The principal periodic cycles observed in annual cumulative precipitation (ACP) were identified at 21, 13, and 9-year intervals. Spatially, while a decreasing trend in precipitation was observed in most areas of Beijing, 63.4 % of the region exhibited an escalating concentration trend, thereby heightening the risk of urban waterlogging. Machine learning model clustering elucidated three predominant spatial dynamic distribution patterns of precipitation in Beijing. The utilization of web crawler technology to acquire water accumulation data addressed challenges in obtaining urban waterlogging data, and validation through Landsat8 images enhanced data reliability and authenticity. Factor detection shows that road network density, topography, and precipitation were the main factors affecting urban waterlogging. These findings hold significant implications for informing flood control strategies and emergency management protocols in urban areas across China.
Collapse