1
|
Dong Q, Gong CX, Xie GL, Zhu GQ, Fang Z. Thermodynamic modeling of freeze pretreatment in the destruction of rice straw structure combined with alkaline-hydrothermal method for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 403:130864. [PMID: 38777230 DOI: 10.1016/j.biortech.2024.130864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Freeze pretreatment combined with alkaline-hydrothermal method of rice straw for enzymatic hydrolysis was studied. Crystallization stress in the rice stem pores caused by water freezing at -20- -40 °C was modeled to illustrate the destruction mechanism. The stress was calculated as 22.5-38.3 MPa that were higher than the tensile yield stress of untreated stems (3.0 MPa), indicating ice formation damaging pore structure. After freeze at -20 °C, rice straw was further hydrothermally treated at 190 °C with 0.4 M Na2CO3, achieving 72.0 % lignin removal and 97.2 % cellulose recovery. Glucose yield rose to 91.1 % by 4.3 times after 24 h hydrolysis at 10 FPU loading of Cellic®CTec2 cellulase. The specific surface area of rice straw was 2.6 m2/g increased by 1.2 times after freeze. Freeze combined with alkaline-hydrothermal treatment is a green and energy-efficient method for improving enzymatic hydrolysis.
Collapse
Affiliation(s)
- Qian Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Chun-Xiao Gong
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Ge-Liang Xie
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Guo-Qiang Zhu
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China
| | - Zhen Fang
- Biomass Group, College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
2
|
Chen J, Cai Y, Wang Z, Wang S, Li J, Song C, Zhuang W, Liu D, Wang S, Song A, Xu J, Ying H. Construction of a Synthetic Microbial Community for Enzymatic Pretreatment of Wheat Straw for Biogas Production via Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9446-9455. [PMID: 38748977 DOI: 10.1021/acs.est.4c02789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Biological pretreatment is a viable method for enhancing biogas production from straw crops, with the improvement in lignocellulose degradation efficiency being a crucial factor in this process. Herein, a metagenomic approach was used to screen core microorganisms (Bacillus subtilis, Acinetobacter johnsonii, Trichoderma viride, and Aspergillus niger) possessing lignocellulose-degrading abilities among samples from three environments: pile retting wheat straw (WS), WS returned to soil, and forest soil. Subsequently, synthetic microbial communities were constructed for fermentation-enzyme production. The crude enzyme solution obtained was used to pretreat WS and was compared with two commercial enzymes. The synthetic microbial community enzyme-producing pretreatment (SMCEP) yielded the highest enzymatic digestion efficacy for WS, yielding cellulose, hemicellulose, and lignin degradation rates of 39.85, 36.99, and 19.21%, respectively. Furthermore, pretreatment of WS with an enzyme solution, followed by anaerobic digestion achieved satisfactory results. SMCEP displayed the highest cumulative biogas production at 801.16 mL/g TS, which was 38.79% higher than that observed for WS, 22.15% higher than that of solid-state commercial enzyme pretreatment and 25.41% higher than that of liquid commercial enzyme pretreatment. These results indicate that enzyme-pretreated WS can significantly enhance biogas production. This study represents a solution to the environmental burden and energy use of crop residues.
Collapse
Affiliation(s)
- Jinmeng Chen
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
- Luzhou LaoJiao Co., Ltd, Luzhou 646000, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | | | - Jia Li
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Chuan Song
- Luzhou LaoJiao Co., Ltd, Luzhou 646000, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Dong Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Andong Song
- College of Life Science, Henan Agricultural University, 218 Ping An Avenue, Zhengdong New District, Zhengzhou 450002, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, 100 Ke xue Dadao, Zhengzhou 450001, China
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Dey P, Chakrabortty S, Haldar D, Rangarajan V, Ashok S. On-site enriched production of cellulase enzyme using rice straw waste and its hydrolytic performance evaluation through systematic dynamic modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36710-36727. [PMID: 36562976 DOI: 10.1007/s11356-022-24797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The application of on-site produced cellulolytic enzymes in place of commercial enzymes towards hydrolytic preparations of reducing sugars using inexpensive lignocellulosic wastes is considered the most efficient strategy to accomplish a cost-effective biofuel production process. Along with improved production, intrinsic and systematic performance evaluation of the produced enzyme during the hydrolysis process through kinetic intervention remains a crucial requirement for achieving the improved performance of the process. With this motivation, the present study primarily deals with the nutritionally optimized production strategy of cellulases from rice straw (RS) waste using Trichoderma reesei (MTCC 164). The highest cellulase production was obtained 8.09 ± 0.32 g/l in batch mode at optimized combinations of 3.5% (w/v) RS inducer, 3.0% (w/v) lactose, and 1.5% (w/v) peptone. Production was further improved through pH-regulated (pH 5.5 to 6.5) fed-batch fermentations. The enzyme produced at pH 6 was considered for hydrolysis studies at 4 to 10% (w/w) solid loading due to reasonable exoglucanase, endoglucanase, and maximum β-glucosidase activity levels of 9.3 U/ml, 3.87 U/ml, and 2.65 U/ml respectively. Multi-reaction systematic kinetic modeling was implemented to evaluate enzyme performance during hydrolysis, and the values of inhibitory kinetic parameters (K2r = 7.1 < K1r = 18.5 < K3r = 276.6) suggested that sequential conversion of cellulose to glucose by existing enzyme components was more dominant over direct conversion.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
| | - Sankha Chakrabortty
- School of Chemical Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, 403726, India
| | - Sowmya Ashok
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| |
Collapse
|
4
|
Puițel AC, Suditu GD, Drăgoi EN, Danu M, Ailiesei GL, Balan CD, Chicet DL, Nechita MT. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze-Thaw Cycles. Polymers (Basel) 2023; 15:polym15041038. [PMID: 36850320 PMCID: PMC9963123 DOI: 10.3390/polym15041038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze-thaw cycles, microwaves, and ultrasounds. The two cycles freeze-thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze-thaw cycles allows the partial preservation of the hemicellulose polymeric structure.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Gabriel Dan Suditu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Elena Niculina Drăgoi
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Maricel Danu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Cătălin Dumitrel Balan
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Daniela-Lucia Chicet
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 41, 700050 Iaşi, Romania
| | - Mircea Teodor Nechita
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- Correspondence:
| |
Collapse
|
5
|
Yang E, Chon K, Kim KY, Le GTH, Nguyen HY, Le TTQ, Nguyen HTT, Jae MR, Ahmad I, Oh SE, Chae KJ. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy. BIORESOURCE TECHNOLOGY 2023; 369:128380. [PMID: 36427768 DOI: 10.1016/j.biortech.2022.128380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic and algal biomasses are known to be vital feedstocks to establish a green hydrogen supply chain toward achieving a carbon-neutral society. However, one of the most pressing issues to be addressed is the low digestibility of these biomasses in biorefinery processes, such as dark fermentation, to produce green hydrogen. To date, various pretreatment approaches, such as physical, chemical, and biological methods, have been examined to enhance feedstock digestibility. However, neither systematic reviews of pretreatment to promote biohydrogen production in dark fermentation nor economic feasibility analyses have been conducted. Thus, this study offers a comprehensive review of current biomass pretreatment methods to promote biohydrogen production in dark fermentation. In addition, this review has provided comparative analyses of the technological and economic feasibility of existing pretreatment techniques and discussed the prospects of the pretreatments from the standpoint of carbon neutrality and circular economy.
Collapse
Affiliation(s)
- Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hai Yen Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mi-Ri Jae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
6
|
Peng M, Zhu J, Luo Y, Li T, Xia X, Qin C, Liang C, Bian H, Yao S. Enhancement of separation selectivity of hemicellulose from bamboo using freeze-thaw-assisted p-toluenesulfonic acid treatment at low acid concentration and high temperature. BIORESOURCE TECHNOLOGY 2022; 363:127879. [PMID: 36058537 DOI: 10.1016/j.biortech.2022.127879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The cellulose-rich residual solids are obtained with p-toluenesulfonic acid (p-TsOH) treatment. However, better fractionation of hemicellulose and separation is difficult to obtain during treatment. This study aims at investigating the separation selectivity of bamboo hemicellulose using freeze-thaw-assisted p-TsOH (F/p-TsOH) treatment. The desired separation effect was achieved at freezing temperature -40 °C, freezing time 20 h, p-TsOH concentration 3.0 %, treatment temperature 130 °C and time 80 min. 93.26 % hemicellulose separation was found, which was 32.88 % higher than that of conventional p-TsOH treatment. Furthermore, the separation yield of lignin decreased significantly from 69.29 % to 13.98 %. The distinct lignin characteristic absorption peaks were found, while that of hemicellulose was difficult to observe. The fiber crystallinity index increased from 50.42 to 56.55 %. Furthermore, greater selectivity for hemicellulose separation was achieved. The results provide a new research thinking for efficient fractionation of lignocellulosic biomass by organic acid treatment.
Collapse
Affiliation(s)
- Meijiao Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Yadan Luo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Tao Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xuelian Xia
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|