1
|
Beretta G, Sangalli M, Sezenna E, Tofalos AE, Franzetti A, Saponaro S. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2033-2049. [PMID: 38953765 DOI: 10.1002/ieam.4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Microbial electrochemical technologies represent innovative approaches to contaminated soil and groundwater remediation and provide a flexible framework for removing organic and inorganic contaminants by integrating electrochemical and biological techniques. To simulate in situ microbial electrochemical treatment of groundwater plumes, this study investigates Cr(VI) reduction within a bioelectrochemical continuous flow (BECF) system equipped with soil-buried electrodes, comparing it to abiotic and open-circuit controls. Continuous-flow systems were tested with two chromium-contaminated solutions (20-50 mg Cr(VI)/L). Additional nutrients, buffers, or organic substrates were introduced during the tests in the systems. With an initial Cr(VI) concentration of 20 mg/L, 1.00 mg Cr(VI)/(L day) bioelectrochemical removal rate in the BECF system was observed, corresponding to 99.5% removal within nine days. At the end of the test with 50 mg Cr(VI)/L (156 days), the residual Cr(VI) dissolved concentration was two orders of magnitude lower than that in the open circuit control, achieving 99.9% bioelectrochemical removal in the BECF. Bacteria belonging to the orders Solirubrobacteriales, Gaiellales, Bacillales, Gemmatimonadales, and Propionibacteriales characterized the bacterial communities identified in soil samples; differently, Burkholderiales, Mycobacteriales, Cytophagales, Rhizobiales, and Caulobacterales characterized the planktonic bacterial communities. The complexity of the microbial community structure suggests the involvement of different microorganisms and strategies in the bioelectrochemical removal of chromium. In the absence of organic carbon, microbial electrochemical removal of hexavalent chromium was found to be the most efficient way to remove Cr(VI), and it may represent an innovative and sustainable approach for soil and groundwater remediation. Integr Environ Assess Manag 2024;20:2033-2049. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gabriele Beretta
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Michela Sangalli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Elena Sezenna
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| | - Anna Espinoza Tofalos
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
- Environmental Research and Innovation (ERIN) Department, Institute of Science and Technology (LIST), Luxembourg, Luxembourg
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Sabrina Saponaro
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
2
|
de Holanda SF, Berghahn E, Vargas LK, Granada CE. Plant growth promoting bacteria promote rice growth cultivated in two different sandy soils subjected distinct climates conditions. World J Microbiol Biotechnol 2024; 40:352. [PMID: 39412640 DOI: 10.1007/s11274-024-04161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/08/2024] [Indexed: 11/09/2024]
Abstract
Sandy soils contain around 70% sand in their composition, making them highly fragile and susceptible to land degradation. Practices such as no-tillage cultivation, the use of bioinoculants, and the application of organic amendments can restore the organic matter in these soils, ensuring sustainable production. In this context, this work aimed to study the microbiological aspects of two sandy soil areas (Brazilian Northeast and South) under contrasting climatic conditions (tropical and temperate). With this purpose, prokaryotic communities were evaluated, and the plant growth-promoting potential of isolated bacteria was assessed by rice inoculation in sandy soil. Despite the high sand content in both soils, soil from the NE was related to the highest phosphorous, calcium, potassium, copper, sodium, zinc, magnesium, and manganese contents, organic matter percentage, and pH. The Shannon diversity index indicated that prokaryotic communities in NE were more diverse than in SU, and PCA revealed that microbial composition exhibited distinct patterns. The rice inoculation experiments were executed to verify if the bacterial isolates displayed a similar growth promotion potential when inoculated in sandy soil areas subjected to different climatic conditions. When all PGP characteristics evaluated were pooled in a PCA, a similar pattern was observed for SU and NE. Burkholderia sp. SU94 was related to highest PGP characteristics evaluated. Paraburkholderia sp. NE32 showed similar results to those of the non-inoculated control. This similar effect of rice growth in the Northeast and South of Brazil suggests that isolate SU94 adapts to different environmental conditions.
Collapse
Affiliation(s)
| | - Emilio Berghahn
- Graduate Program in Biotechnology, University of Taquari Valley-Univates, Lajeado, RS, Brazil
| | - Luciano Kayser Vargas
- Department of Agricultural Research and Diagnosis, Secretariat of Agriculture, Livestock and Rural Development, 570 Gonçalves Dias St, Porto Alegre, Brazil
| | - Camille Eichelberger Granada
- Graduate Program in Biotechnology, University of Taquari Valley-Univates, Lajeado, RS, Brazil.
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Liu Y, Lai J, Sun X, Huang L, Sheng Y, Zhang Q, Zeng H, Zhang Y, Ye P, Wei S. Comparative Metagenomic Analysis Reveals Rhizosphere Microbiome Assembly and Functional Adaptation Changes Caused by Clubroot Disease in Chinese Cabbage. Microorganisms 2024; 12:1370. [PMID: 39065138 PMCID: PMC11278620 DOI: 10.3390/microorganisms12071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Clubroot is a major disease and severe threat to Chinese cabbage, and it is caused by the pathogen Plasmodiophora brassicae Woron. This pathogen is an obligate biotrophic protist and can persist in soil in the form of resting spores for more than 18 years, which can easily be transmitted through a number of agents, resulting in significant economic losses to global Chinese cabbage production. Rhizosphere microbiomes play fundamental roles in the occurrence and development of plant diseases. The changes in the rhizosphere microorganisms could reveal the severity of plant diseases and provide the basis for their control. Here, we studied the rhizosphere microbiota after clubroot disease infections with different severities by employing metagenomic sequencing, with the aim of exploring the relationships between plant health, rhizosphere microbial communities, and soil environments; then, we identified potential biomarker microbes of clubroot disease. The results showed that clubroot disease severity significantly affected the microbial community composition and structure of the rhizosphere soil, and microbial functions were also dramatically influenced by it. Four different microbes that had great potential in the biocontrol of clubroot disease were identified from the obtained results; they were the genera Pseudomonas, Gemmatimonas, Sphingomonas, and Nocardioides. Soil pH, organic matter contents, total nitrogen, and cation exchange capacity were the major environmental factors modulating plant microbiome assembly. In addition, microbial environmental information processing was extremely strengthened when the plant was subjected to pathogen invasion, but weakened when the disease became serious. In particular, oxidative phosphorylation and glycerol-1-phosphatase might have critical functions in enhancing Chinese cabbage's resistance to clubroot disease. This work revealed the interactions and potential mechanisms among Chinese cabbage, soil environmental factors, clubroot disease, and microbial community structure and functions, which may provide a novel foundation for further studies using microbiological or metabolic methods to develop disease-resistant cultivation technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pengsheng Ye
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences/The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Chengdu 610300, China; (Y.L.); (J.L.); (X.S.); (L.H.); (Y.S.); (Q.Z.); (H.Z.); (Y.Z.)
| | - Shugu Wei
- Industrial Crops Research Institute, Sichuan Academy of Agricultural Sciences/The Key Laboratory of Vegetable Germplasm and Variety Innovation in Sichuan Province, Chengdu 610300, China; (Y.L.); (J.L.); (X.S.); (L.H.); (Y.S.); (Q.Z.); (H.Z.); (Y.Z.)
| |
Collapse
|
4
|
Li G, Liu J, Tian Y, Chen H, Ren H. Investigation and Analysis of Rhizosphere Soil of Bayberry-Decline-Disease Plants in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:3394. [PMID: 36501433 PMCID: PMC9740188 DOI: 10.3390/plants11233394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The rampant bayberry decline disease has been regarded as related to soil with the long-term plantation bayberry. These parameters, hydrogen, aluminum, other alkali cations, and plant-related nutrients, were measured from the soil around diseased tree roots 10, 20, and 30 years old. The pH significantly declined in topsoil with increasing tree age and rose with increasing depth of the soil layer with an age of 10, 20, and 30 years. The concentration of exchangeable aluminum has risen significantly with the increase of the tree ages in the top soil layer and also in 0 to 40 cm soils layer with ten-year-old trees. In the top soil layer with a depth of 0 to 10 cm, the cation concentrations of Ca2+, Mg2+, and K+ has fallen significantly with the increase of tree ages. A higher concentration of exchangeable aluminum was observed in the soil with trees more seriously affected by the disease and was accompanied with lower concentrations of Ca2+, Mg2+, and K+. The correlation analysis showed that the soil pH is significantly positively related to the concentration of exchangeable Ca2+, total nitrogen, and total phosphorus and negatively to exchangeable aluminum. These findings provided a new insight to mitigate the disease by regulating the soil parameters.
Collapse
Affiliation(s)
- Gang Li
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jingjing Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tian
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Lu Y, Cong P, Kuang S, Tang L, Li Y, Dong J, Song W. Long-term excessive application of K 2SO 4 fertilizer alters bacterial community and functional pathway of tobacco-planting soil. FRONTIERS IN PLANT SCIENCE 2022; 13:1005303. [PMID: 36247599 PMCID: PMC9554487 DOI: 10.3389/fpls.2022.1005303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 05/31/2023]
Abstract
To improve tobacco leaf quality, excessive K2SO4 fertilizers were applied to soils in major tobacco-planting areas in China. However, the effects of K2SO4 application on soil microbial community and functions are still unclear. An eight-year field experiment with three kinds of K2SO4 amounts (low amount, K2O 82.57 kg hm-2, LK; moderate amount, K2O 165.07 kg hm-2, MK; high amount, K2O 247.58 kg hm-2, HK) was established to assess the effects of K2SO4 application on the chemical and bacterial characteristics of tobacco-planting soil using 16S rRNA gene and metagenomic sequencing approaches. Results showed that HK led to lower pH and higher nitrogen (N), potassium (K), sulfur(S) and organic matter contents of the soil than LK. The bacterial community composition of HK was significantly different from those of MK and LK, while these of MK and LK were similar. Compared to LK, HK increased the relative abundance of predicted copiotrophic groups (e.g. Burkholderiaceae, Rhodospirillaceae families and Ellin6067 genus) and potentially beneficial bacteria (e.g. Gemmatimonadetes phylum and Bacillus genus) associated with pathogens and heavy metal resistance, N fixation, dissolution of phosphorus and K. While some oligotrophic taxa (e.g. Acidobacteria phylum) related to carbon, N metabolism exhibited adverse responses to HK. Metagenomic analysis suggested that the improvement of pathways related to carbohydrate metabolism and genetic information processing by HK might be the self-protection mechanism of microorganisms against environmental stress. Besides, the redundancy analysis and variation partitioning analysis showed that soil pH, available K and S were the primary soil factors in shifting the bacterial community and KEGG pathways. This study provides a clear understanding of the responses of soil microbial communities and potential functions to excessive application of K2SO4 in tobacco-planting soil.
Collapse
Affiliation(s)
- Ya Lu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ping Cong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shuai Kuang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lina Tang
- Tobacco Science Research Institute, Fujian Tobacco Monopoly Administration, Fuzhou, China
| | - Yuyi Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Dong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
6
|
Ni H, Zong R, Sun J, Wu Y, Yu L, Liu Y, Liu J, Ju R, Sun X, Zheng Y, Tan L, Liu L, Dong Y, Li T, Zhang Y, Tu Q. Response of Bacterial Community to the Occurrence of Clubroot Disease in Chinese Cabbage. Front Microbiol 2022; 13:922660. [PMID: 35875525 PMCID: PMC9298529 DOI: 10.3389/fmicb.2022.922660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clubroot disease is a common soilborne disease caused by Plasmodiophora brassicas Wor. and widely occurs in Chinese cabbage. Soil microorganisms play vital roles in the occurrence and development of plant diseases. The changes in the soil bacterial community could indicate the severity of plant disease and provide the basis for its control. This study focused on the bacterial community of the clubroot disease-infected soil-root system with different severity aiming to reveal the composition and structure of soil bacteria and identified potential biomarker bacteria of the clubroot disease. In the clubroot disease-infected soil, the bacterial community is mainly composed of Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacilli, Thermolrophilia, Bacteroidia, Gemmatimonadetes, Subgroup_6, Deltaproteobacteria, KD4-96, and some other classes, while the major bacterial classes in the infected roots were Oxyphotobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacilli, Bacteroidia, Saccharimonadia, Thermoleophilia, Clostridia, Chloroflexia, and some other classes. The severe clubroot disease soil-root system was found to possess a poorer bacterial richness, evenness, and better coverage. Additionally, a significant difference was observed in the structure of the bacterial community between the high-severity (HR) and healthy (LR) soil-root system. Bacillus asahii and Noccaea caerulescens were identified as the differential bacteria between the LR and HR soil and roots, respectively. pH was demonstrated as a vital factor that was significantly associated with the abundance of B. asahii and N. caerulescens. This study provides novel insight into the relationship between soil bacteria and the pathogen of clubroot disease in Chinese cabbage. The identification of resistant species provides candidates for the monitoring and biocontrol of the clubroot disease.
Collapse
Affiliation(s)
- Haiping Ni
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China.,Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Jianjun Sun
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China.,Shandong Agricultural Technology Extension Center, Jinan, China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Yuanyuan Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Jin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Ruicheng Ju
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Xianli Sun
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yulian Zheng
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Lekun Tan
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Lumin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yachao Dong
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China.,Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiang Tu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|