1
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
2
|
Saad S, Abdelghany AM, Abou-ElWafa GS, Aldesuquy HS, Eltanahy E. Bioactivity of selenium nanoparticles biosynthesized by crude phycocyanin extract of Leptolyngbya sp. SSI24 cultivated on recycled filter cake wastes from sugar-industry. Microb Cell Fact 2024; 23:211. [PMID: 39061030 PMCID: PMC11282635 DOI: 10.1186/s12934-024-02482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Beet filter cake (BFC) is a food-grade solid waste produced by the sugar industry, constituting a permanent source of pollution. Cyanobacteria are considered a sustainable resource for various bioactive compounds such as phycocyanin pigment with valuable applications. This study aimed to use beet filter cake extract (BFCE) as an alternative medium for the economic cultivation of cyanobacterium Leptolyngbya sp. SSI24 PP723083, then biorefined the bioactive component such as phycocyanin pigment that could be used in the production of selenium nanoparticles. RESULTS The results of the batch experiment displayed that the highest protein content was in BG11medium (47.9%); however, the maximum carbohydrate and lipid content were in 25% BFCE (15.25 and 10.23%, respectively). In addition, 75% BFCE medium stimulated the phycocyanin content (25.29 mg/g) with an insignificant variation compared to BG11 (22.8 mg/g). Moreover, crude phycocyanin extract from Leptolyngbya sp SSI24 cultivated on BG11 and 75% BFCE successfully produced spherical-shaped selenium nanoparticles (Se-NPs) with mean sizes of 95 and 96 nm in both extracts, respectively. Moreover, XRD results demonstrated that the biosynthesized Se-NPs have a crystalline nature. In addition, the Zeta potential of the biosynthesized Se-NPs equals - 17 mV and - 15.03 mV in the control and 75% BFCE treatment, respectively, indicating their stability. The biosynthesized Se-NPs exhibited higher effectiveness against Gram-positive bacteria than Gram-negative bacteria. Moreover, the biosynthesized Se-NPs from BG11 had higher antioxidant activity with IC50 of 60 ± 0.7 compared to 75% BFCE medium. Further, Se-NPs biosynthesized from phycocyanin extracted from Leptolyngbya sp cultivated on 75% BFCE exhibited strong anticancer activity with IC50 of 17.31 ± 0.63 µg/ml against the human breast cancer cell line. CONCLUSIONS The BFCE-supplemented medium can be used for the cultivation of cyanobacterial strain for the phycocyanin accumulation that is used for the green synthesis of selenium nanoparticles that have biological applications.
Collapse
Affiliation(s)
- Sara Saad
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Amr Mohamed Abdelghany
- Spectroscopy Department, Physics Research Institute, National Research Center, Giza, 12311, Egypt
| | | | | | - Eladl Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Zhang C, Liao Y, Li T, Zhong H, Shan L, Yu P, Xia C, Xu L. Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo. Toxicol Res (Camb) 2024; 13:tfae011. [PMID: 38283821 PMCID: PMC10811521 DOI: 10.1093/toxres/tfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
The 2022 US Cancer Statistics show that breast cancer is one of the most common cancers in women. Epidemiology has shown that adding flavonoids to the diet inhibits cancers that arise in particular women, such as cervical cancer, ovarian cancer, and breast cancer. Although there have been research reports on apigenin (API) and breast cancer, its anti-tumor effect and potential mechanism on breast cancer have not yet been clarified. Therefore, in this study, we used 4T1 cells and a 4T1 xenograft tumor mouse model to investigate the antitumor effect of API on breast cancer and its underlying mechanism. In vitro, we used MTT, transwell, staining, and western blotting to investigate the inhibitory effect of apigenin on 4T1 and the underlying molecular mechanism. In vivo by establishing a xenograft tumor model, using immunohistochemistry, and flow cytometry to study the inhibitory effect of apigenin on solid breast tumors and its effect on the tumor immune microenvironment. The results showed that API can induce breast cancer cell apoptosis through the PI3K/AKT/Nrf2 pathway and can improve the tumor immune microenvironment in mice with breast tumors, thereby inhibiting the growth of breast cancer. Thus, API may be a promising agent for breast cancer treatment.
Collapse
Affiliation(s)
- Chu Zhang
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Yupei Liao
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Tangjia Li
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Haijing Zhong
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Pei Yu
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Chenglai Xia
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lipeng Xu
- Institute of New Drug Research, College of Pharmacy/Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases/International Cooperative Laboratory of Traditional Chinese, Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
5
|
Almeer R, Alyami NM. The protective effect of apigenin against inorganic arsenic salt-induced toxicity in PC12 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106625-106635. [PMID: 37730986 DOI: 10.1007/s11356-023-29884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Poisoning by arsenic affects people worldwide, and many human illnesses and health issues, including neurotoxicity, have been linked to chronic exposure to arsenic. When exposed to arsenic, the body produces intracellular reactive oxygen species (ROS), which influence a variety of alterations in cellular activity and directly harm molecules through oxidation. Arsenic-induced lesions are improved by antioxidants with the ability to lower ROS levels. Therefore, the current research aimed to assess how well apigenin protected PC12 cells from the toxicity caused by inorganic arsenic salt (iAs). For 24 and 48 h, iAs and/or apigenin were applied to PC12 cells. Then, oxidative stress indicators like malondialdehyde (MDA), nitric oxide (NO), and ROS in addition to the enzymatic and non-enzymatic antioxidant molecules such as catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD) were assessed. Moreover, after exposure to iAs, PC12 was examined for nuclear factor erythroid 2-related factor 2 (Nrf2) expression to clarify how apigenin manifests its neuroprotection. Furthermore, NF-kB p65 concentration and IL-1B, IL-6, and TNF-α mRNA expression were measured to assess neuroinflammation. Bax, caspase-3, and Bcl-2 levels were measured to investigate apigenin's potential to protect PC12 cells from iAs poisoning. The obtained results revealed that, the cell survival rate in the iAs group was significantly lower (P < 0.05), and the number of viable cells steadily increased after apigenin treatment. Furthermore, the study found that iAs decreased GSH, CAT, and SOD in the PC12 cells while increasing ROS, MDA, and NO levels. In PC12 cells, the capacity of iAs to cause oxidative stress was linked to the induction of neuroinflammation and apoptosis. Interestingly, apigenin pre-treatment of PC12 cells resulted in exceptional protection against iAs-induced neuroinflammation, oxidative stress, and apoptotic cell death. Nrf2 upregulation in PC12 cells may explain the neuroprotection effect of apigenin against iAs toxicity. In conclusion, the obtained results of the present study have clinical significance and indicate that apigenin is a promising candidate for shielding the nervous system from toxic effects caused by arsenic. These findings require further investigation using in vivo experimental models.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Al-Awaida W, Al-Ameer HJ, Sharab A, Akasheh RT. Modulation of wheatgrass ( Triticum aestivum Linn) toxicity against breast cancer cell lines by simulated microgravity. Curr Res Toxicol 2023; 5:100127. [PMID: 37767028 PMCID: PMC10520342 DOI: 10.1016/j.crtox.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study scrutinizes the effects of simulated microgravity on the antioxidant and cytotoxic potential, along with the phytochemical content of wheatgrass (Triticum aestivum Linn). To imitate microgravity, wheatgrass seeds were germinated in a 3D-clinostat at different rotations per minute (5, 10, 15, and 20 rpm), together with terrestrial gravity control, over 10 days. After germination, the methanolic extracts were analyzed using UPLC-Triple Quad LCMS for their phytochemical composition and tested for their hydrogen peroxide, nitric oxide, and DPPH scavenging activities. The cytotoxic effects of these extracts were evaluated against normal skin fibroblasts, normal breast cells (MCF-10), and breast cancer cells (MCF-7 and MDA-231). The findings showed an extended root growth in wheatgrass germinated under microgravity (WGM) compared to under gravity (WGG). Additionally, WGM extracts demonstrated increased H2O2-, NO-, and DPPH-scavenging activities and a higher content of polyphenols and flavonoids than WGG extracts. These effects were amplified with an increase in clinostat rotations. Moreover, WGM extracts were found to contain a unique set of bioactive compounds (compounds that were detected in the microgravity-germinated wheatgrass but were either absent or present in lower concentrations in wheatgrass germinated under standard gravity conditions.), including pyridoxine, apigenin, and tocopherol, among others, which were absent in WGG. The UPLC-Triple Quad LCMS analysis revealed these unique bioactive compounds in WGM. Notably, WGM extracts showed enhanced cytotoxic effects against normal skin fibroblasts, normal MCF-10, MCF-7, and breast cancer MDA-231 cell lines, with increased cytotoxicity correlating with the number of clinostat rotations. Particularly, WGM extract (at 20 rpm) demonstrated significantly stronger cytotoxicity against MCF-7 breast cancer cells. Further in-depth gene expression analysis of MCF-7 cells exposed to WGM revealed a significant downregulation of genes integral to breast cancer pathways, tyrosine kinase signaling, and DNA repair, complemented by upregulation of certain cell survival and cytotoxic genes. These alterations in genetic pathways associated with cell survival, hormone responses, and cancer progression may elucidate the enhanced cytotoxicity observed in WGM extracts. Our findings underscore the potential of microgravity as a tool to enhance the cytotoxic capabilities of wheatgrass against cancer cell lines, presenting a promising direction for future research in the field of space biology and its implications for terrestrial health.
Collapse
Affiliation(s)
- Wajdy Al-Awaida
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
- Department of Pharmaceutical Biotechnology, Faculty of Allied Medical Sciences, Al-AhliyyaAmman University (AAU), Amman, 19328, Jordan
| | - Ahmad Sharab
- Department of Biology and Biotechnology, Faculty of Science, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| | - Rand T. Akasheh
- Department of Nutrition and Dietetics, American University of Madaba, P.O. Box: 99, Madaba 17110, Jordan
| |
Collapse
|
7
|
Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent advances in nanoparticle applications in respiratory disorders: a review. Front Pharmacol 2023; 14:1059343. [PMID: 37538179 PMCID: PMC10395100 DOI: 10.3389/fphar.2023.1059343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/30/2023] [Indexed: 08/05/2023] Open
Abstract
Various nanoparticles are used in the discovery of new nanomedicine to overcome the shortages of conventional drugs. Therefore, this article presents a comprehensive and up-to-date review of the effects of nanoparticle-based drugs in the treatment of respiratory disorders, including both basic and clinical studies. Databases, including PubMed, Web of Knowledge, and Scopus, were searched until the end of August 2022 regarding the effect of nanoparticles on respiratory diseases. As a new tool, nanomedicine offered promising applications for the treatment of pulmonary diseases. The basic composition and intrinsic characteristics of nanomaterials showed their effectiveness in treating pulmonary diseases. The efficiency of different nanomedicines has been demonstrated in experimental animal models of asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer, lung infection, and other lung disorders, confirming their function in the improvement of respiratory disorders. Various types of nanomaterials, such as carbon nanotubes, dendrimers, polymeric nanomaterials, liposomes, quantum dots, and metal and metal oxide nanoparticles, have demonstrated therapeutic effects on respiratory disorders, which may lead to new possible remedies for various respiratory illnesses that could increase drug efficacy and decrease side effects.
Collapse
Affiliation(s)
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
9
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
10
|
Majani SS, Sathyan S, Manoj MV, Vinod N, Pradeep S, Shivamallu C, K.N V, Kollur SP. Eco-friendly synthesis of MnO2 nanoparticles using Saraca asoca leaf extract and evaluation of in vitro anticancer activity. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 6:100367. [DOI: 10.1016/j.crgsc.2023.100367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
11
|
Alyami NM, Alyami HM, Almeer R. Using green biosynthesized kaempferol-coated sliver nanoparticles to inhibit cancer cells growth: an in vitro study using hepatocellular carcinoma (HepG2). Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe ongoing loss of human life owing to various forms of cancer necessitates the development of a more effective/honorable therapeutic approach. Moreover, finding a novel green-synthesized anti-cancer therapy is vital because of the induced drug resistance against the commonly used drugs. Collecting the advantage of the nanometer size of nanoparticles with the biosafety of plant-based substances might potentiate the anticancer effect with minimal toxic effect. In the current study, we aimed to green-synthesize using kaempferol (flavonoid) as a coating the silver nanoparticles (AgNPs) and investigated their anti-cancer activity in hepatocellular carcinoma (HepG2) cell line. First of all, kaempferol-coated AgNPs characters were well-defined using Fourier transmission infrared (FTIR), X-ray diffraction (XRD), zetasizer, and transmission electron microscopy (TEM). The results showed their 200 nm size, spherical shape, less aggregation with high stability characteristics. Then, the cytotoxic effect of both 1/3 and 1/2 LC50 of AgNPs, and doxorubicin (DOX, anticancer drug) on HepG2 cells was evaluated by dimethylthiazolyltetrazolium bromide (MTT) assay and release of lactate dehydrogenase (LDH) leakage percent. Reactive oxygen species (ROS) and apoptotic markers were also analyzed, along with the migration and invasion of HepG2 cells were recorded. Our findings showed that kaempferol-coated AgNPs could induce cytotoxic effects and reduce the viability of HepG2 cells in a concentration-dependent manner. LDH leakage % was significantly increased in cells treated with kaempferol-coated AgNPs confirming their cytotoxic effect. ROS generation and lipid peroxidation could significantly increase in HepG2 cells treated with kaempferol-coated AgNPs along with the exhaustion of antioxidant Glutathione (GSH) marker revealing the induced oxidative damage. Oxidative damage-mediated apoptosis was confirmed by the elevated levels of the pro-apoptotic markers (Bax, Cyt-c, P53, and caspase-3) and the reduced level of anti-apoptotic marker (Bcl-2) using enzyme-linked immunosorbent assay (ELISA). Furthermore, kaempferol-coated AgNPs could suppress the migrating and invading ability of HepG2 cells showing their antimetastatic effect. To end up, kaempferol-coated AgNPs can induce a potential anti-cancer effect in HepG2 cells via oxidative stress-mediated apoptosis.
Collapse
|
12
|
Othman MS, Obeidat ST, Aleid GM, Al-Bagawi AH, Fehaid A, Habotta OA, Badawy MM, Elganzoury SS, Abdalla MS, Abdelfattah MS, Daiam MA, Abdel Moneim AE. Protective effect of Allium atroviolaceum-synthesized SeNPs on aluminum-induced brain damage in mice. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract
This study evaluated the possible neuroprotective effect of Allium atroviolaceum extract (AaE)-synthesized selenium nanoparticles (SeNPs) on aluminum (Al)-induced neurotoxicity in mice, explaining the likely mechanisms. Mice were divided into five groups: G1, control; G2, AaE group that received AaE (200 mg/kg) for 4 weeks; and groups 3, 4, and 5 received AlCl3 (100 mg/kg) for 3 weeks. After that, G4 received AaE (200 mg/kg), and G5 received SeNPs-AaE (0.5 mg/kg) for another 1 week. Exposure to AlCl3 boosted oxidative damage in brain tissue as evidenced by a reduction in glutathione concentrations and other antioxidant enzymes along with increased lipid peroxidation and nitric oxide levels. There was also a rise in the concentrations of interleukin-1β, TNF-α, and cyclooxygenase-II activities. AlCl3-treated mice showed reduced brain-derived neurotrophic factor (BDNF) and dopamine levels, increased acetylcholinesterase (AChE) activity, and reduced Bcl-2, and Bax, and caspase-3 activities. Treatment with SeNPs-AaE significantly reduced markers of oxidative stress, inflammation, and apoptosis. In addition, in SeNPs-AaE-treated rats, levels of BDNF and dopamine were significantly increased along with a reduction in AChE as compared with the AlCl3 group. Therefore, our results indicate that SeNPs-AaE has a potential neuroprotective effect against Al-mediated neurotoxic effects because of its powerful antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory activities.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
- Biochemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA) , Giza , Egypt
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Ghada M. Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Amal H. Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha’il , Hail , Kingdom of Saudi Arabia
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Ola A. Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University , Dakahlia , Egypt
| | - Mohamed M. Badawy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University , Mansoura , Egypt
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Delta University for Science and Technology , Gamasa , Egypt
| | - Sara S. Elganzoury
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University , Cairo , Egypt
| | | | - Mohamed A. Daiam
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College , Jeddah , Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University , Ismailia , Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University , Cairo , Egypt
| |
Collapse
|
13
|
Alyami NM, Almeer R, Alyami HM. Role of green synthesized platinum nanoparticles in cytotoxicity, oxidative stress, and apoptosis of human colon cancer cells (HCT-116). Heliyon 2022; 8:e11917. [PMID: 36506358 PMCID: PMC9732314 DOI: 10.1016/j.heliyon.2022.e11917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Progresses in the medicinal application of nanocompounds were accepted for the treatment of cancer. Nanoparticles-based therapy is of benefit for effective biodistribution and specific targeting. The current study investigated the anticancer effect of green synthesized platinum nanoparticles (PtNPs) against colon cancer cells (HCT-116). Flow cytometry and ELISA techniques were employed for detecting apoptotic and oxidative stress markers. Furthermore, PtNPs-lycopene (PtNPs-LP) on cell migration and invasion of HCT-116 cells was also examined. The PtNPs-LP was capable of diminishing cell proliferation and viability of HCT-116 cells in a dose-dependent mode. After treatment with PtNPs-LP, a significant increase in pro-apoptotic Bax and caspase-3 and a decrease in anti-apoptotic Bcl-2 was observed in treated cells that subsequently released cytochrome C into its cytoplasm, initiating cell death. Moreover, PtNPs-LP induced excessive generation of reactive oxygen species (ROS) and oxidative stress in cancer cells. In conclusion, PtNPs-LP exerts an antitumor effect against colon cancer cells via mediating important mechanisms such as cytotoxicity, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Nouf M. Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Corresponding author.
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hanadi M. Alyami
- Specialized Dentistry Department, King Fahad Medical City, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
15
|
Bjørklund G, Shanaida M, Lysiuk R, Antonyak H, Klishch I, Shanaida V, Peana M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022; 27:6613. [PMID: 36235150 PMCID: PMC9570904 DOI: 10.3390/molecules27196613] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023] Open
Abstract
Aging is characterized by an imbalance between damage inflicted by reactive oxygen species (ROS) and the antioxidative defenses of the organism. As a significant nutritional factor, the trace element selenium (Se) may remodel gradual and spontaneous physiological changes caused by oxidative stress, potentially leading to disease prevention and healthy aging. Se is involved in improving antioxidant defense, immune functions, and metabolic homeostasis. An inadequate Se status may reduce human life expectancy by accelerating the aging process or increasing vulnerability to various disorders, including immunity dysfunction, and cancer risk. This review highlights the available studies on the effective role of Se in aging mechanisms and shows the potential clinical implications related to its consumption. The main sources of organic Se and the advantages of its nanoformulations were also discussed.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Ivan Klishch
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
16
|
New Green Approaches in Nanoparticles Synthesis: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196472. [PMID: 36235008 PMCID: PMC9573382 DOI: 10.3390/molecules27196472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.
Collapse
|
17
|
Alhawiti AS. Citric acid-mediated green synthesis of selenium nanoparticles: antioxidant, antimicrobial, and anticoagulant potential applications. BIOMASS CONVERSION AND BIOREFINERY 2022:1-10. [PMID: 35646508 PMCID: PMC9126098 DOI: 10.1007/s13399-022-02798-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 05/04/2023]
Abstract
Using microwave technique in the presence of citric acid, selenium nanoparticles (SeNPs) were fabricated. The morphological characteristics revealed that the spherical SeNPs with diameters ranging from 10.5 to 20 nm aggregated spherical shapes with sizes ranging from 0.67 to 0.83 mm. Moreover, the antioxidant efficacy was assessed by the DPPH radical scavenging test, which depicted that green-prepared nanoparticle at a 106.3 mg/mL dosage had the maximum scavenging capacity (301.1 ± 11.42 mg/g). Otherwise, with nanoparticle concentrations of 500 mg/ml, in vitro cell viability of SeNPs through human breast cancer MCF-7 cell lines was reduced to 61.2 ± 2.2% after 1 day of exposure. The antibacterial activity was tested against G-negative Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli), G-positive bacteria Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus), which demonstrated that SeNPs had little activity against S. aureus. Still, it had the highest activity against E. coli, with a zone of inhibition (ZOI) of 25.2 ± 1.5 mm compared to 16.0 ± 0.6 mm for the standard antibiotic. Most notably, biogenic SeNPs have anticoagulant activities using activated partial thromboplastin time (aPTT) assessment. Based on previous findings, SeNPs can be used in medical aid and their cell viability, antioxidant, anticoagulant, and effects on bacteria.
Collapse
Affiliation(s)
- Aliyah S. Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 71421 Kingdom of Saudi Arabia
| |
Collapse
|