1
|
Xhanari K, Finšgar M. Recent advances in the modification of electrodes for trace metal analysis: a review. Analyst 2023; 148:5805-5821. [PMID: 37697964 DOI: 10.1039/d3an01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This review paper summarizes the research published in the last five years on using different compounds and/or materials as modifiers for electrodes employed in trace heavy metal analysis. The main groups of modifiers are identified, and their single or combined application on the surface of the electrodes is discussed. Nanomaterials, film-forming substances, and polymers are among the most used compounds employed mainly in the modification of glassy carbon, screen-printed, and carbon paste electrodes. Composites composed of several compounds and/or materials have also found growing interest in the development of modified electrodes. Environmentally friendly substances and natural products (mainly biopolymers and plant extracts) have continued to be included in the modification of electrodes for trace heavy metal analysis. The main analytical performance parameters of the modified electrodes as well as possible interferences affecting the determination of the target analytes, are discussed. Finally, a critical evaluation of the main findings from these studies and an outlook discussing possible improvements in this area of research are presented.
Collapse
Affiliation(s)
- Klodian Xhanari
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
- University of Tirana, Faculty of Natural Sciences, Boulevard "Zogu I", 1001 Tirana, Albania
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Dat NM, Cong CQ, Hai ND, Huong LM, Nam NTH, Tinh DQ, Tai LT, An H, Duy MQ, Phong MT, Hieu NH. Facile Synthesis of Eco‐Friendly Silver@Graphene Oxide Nanocomposite for Optical Sensing. ChemistrySelect 2023. [DOI: 10.1002/slct.202204183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nguyen Minh Dat
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Che Quang Cong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Duy Hai
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Le Minh Huong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Dang Quoc Tinh
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Ho Chi Minh City Medicine and Pharmacy University, 217 Hong Bang District 5 Ho Chi Minh City Vietnam
| | - Le Tan Tai
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Hoang An
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Mai Quoc Duy
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
- University of Science (HCMUS-VNU), 227 Nguyen Van Cu District 5 Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCM Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Manikandan R, Pugal Mani S, Sangeetha Selvan K, Yoon JH, Chang SC. Anodized Screen-Printed Electrode Modified with Poly(5-amino-4H-1,2,4-triazole-3-thiol) Film for Ultrasensitive Detection of Hg2+ in Fish Samples. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Alula MT, Madingwane ML, Yan H, Lemmens P, Zhe L, Etzkorn M. Biosynthesis of bifunctional silver nanoparticles for catalytic reduction of organic pollutants and optical monitoring of mercury (II) ions using their oxidase-mimic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81938-81953. [PMID: 35739451 DOI: 10.1007/s11356-022-21619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, an aqueous extract of Sclerocarya birrea leaves was used as a reducing agent to synthesize silver nanoparticles (AgNPs). The synthesis was carried out at room temperature and was both rapid and simple. Different characterization techniques such as UV/visible spectroscopy, surface-enhanced Raman spectroscopy, X-ray diffraction, and focused ion beam scanning electron microscopy were used to confirm the formation of AgNPs. The synthesized nanoparticles exhibited catalytic activity for the reduction of 4-nitrophenol, methyl orange, methylene blue, and rhodamine 6G. The catalytic activity was monitored by measuring the UV/visible absorbance spectra of the compounds using sodium borohydride as a reducing agent and found to be high. Additionally, the particles displayed oxidase-like activity. In the presence of AgNPs, 3, 3', 5, 5'-tetramethylbenzidine (TMB) which is colorless was transformed to oxidized TMB, which is blue, using dissolved oxygen as the oxidant. In the presence of Hg2+, the oxidase-like activity was enhanced. On the basis of this observation, an assay for the analysis of Hg2+ was developed. The linear range of the calibration curve is wide (0-600 µM) and the limit of detection (LOD) is low, as small as 34.8 nM. The method is strongly selective towards Hg2+. Tap water obtained from the laboratory where these experiments were carried out was used to study the feasibility of the method in real sample analyses.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana.
| | - Mildred Lesang Madingwane
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana
| | - Hongdan Yan
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Peter Lemmens
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Liu Zhe
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Markus Etzkorn
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| |
Collapse
|
5
|
Kumar P, Dixit J, Singh AK, Rajput VD, Verma P, Tiwari KN, Mishra SK, Minkina T, Mandzhieva S. Efficient Catalytic Degradation of Selected Toxic Dyes by Green Biosynthesized Silver Nanoparticles Using Aqueous Leaf Extract of Cestrum nocturnum L. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3851. [PMID: 36364627 PMCID: PMC9655307 DOI: 10.3390/nano12213851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 05/11/2023]
Abstract
In the present study, the catalytic degradation of selected toxic dyes (methylene blue, 4-nitrophenol, 4-nitroaniline, and congo red) using biosynthesized green silver nanoparticles (AgNPs) of Cestrum nocturnum L. was successfully performed. These AgNPs are efficiently synthesized when a reaction mixture containing 5 mL of aqueous extract (3%) and 100 mL of silver nitrate (1 mM) is exposed under sunlight for 5 min. The synthesis of AgNPs was confirmed based on the change in the color of the reaction mixture from pale yellow to dark brown, with maximum absorbance at 455 nm. Obtained NPs were characterized by different techniques, i.e., FTIR, XRD, HR-TEM, HR-SEM, SAED, XRD, EDX, AFM, and DLS. Green synthesized AgNPs were nearly mono-dispersed, smooth, spherical, and crystalline in nature. The average size of the maximum number of AgNPs was 77.28 ± 2.801 nm. The reduction of dyes using a good reducing agent (NaBH4) was tested. A fast catalytic degradation of dyes took place within a short period of time when AgNPs were added in the reaction mixture in the presence of NaBH4. As a final recommendation, Cestrum nocturnum aqueous leaf extract-mediated AgNPs could be effectively implemented for environmental rehabilitation because of their exceptional performance. This can be utilized in the treatment of industrial wastewater through the breakdown of hazardous dyes.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Dixit
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Amit Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344096 Rostov on Don, Russia
| | - Pooja Verma
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | | | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344096 Rostov on Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344096 Rostov on Don, Russia
| |
Collapse
|