1
|
Cai Y, Li H, Qu G, Hu Y, Zou H, Zhao S, Cheng M, Chu X, Ren N. Responses of applied voltages on the archaea microbial distribution in sludge digestion. CHEMOSPHERE 2023; 339:139639. [PMID: 37495052 DOI: 10.1016/j.chemosphere.2023.139639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the development of urban population led to the increase of domestic water consumption, consequently the generation of surplus sludge (SS) produced increasingly during sewage treatment processes. In order to enhance the SS resource utilization efficiency, an electricity-assisted anaerobic digestion (EAAD) system was employed to examine the alterations in the digestion broth and the characteristics of gas production. Additionally, the response of applied voltages on the distribution of archaeal community near various electrodes within the sludge was explored. The results revealed that the application of high voltages exceeding 3.0 V hindered the CH4 production but stimulated the CO2 generation. Subsequently, both CH4 and CO2 production were impeded by the applied voltages. Furthermore, the increased voltages significantly decreased the abundance of Methanomicrobia, Methanosaeta, and Methanosarcina, which were crucial determinants of CH4 content in biogas. Notably, the excessively high voltages intensities caused the AD process to halt and even inactivate the microbial flora. Interestingly, the distribution characteristics of archaeal community were influenced not only by the voltages intensity but also exhibited variations between the anode and cathode regions. Moreover, as the applied voltage intensified, the discrepancy of responses between the cathode and anode regions became more pronounced, offering novel theoretical and technical foundations for the advancement of electricity-assisted with AD technology.
Collapse
Affiliation(s)
- Yingying Cai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Heng Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Yuntianhua Environmental Protection Technology Co., LTD, Kunming, 650228, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Hongmei Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Shiqiang Zhao
- Yunnan Shunfeng Erhai Environmental Protection Technology Co., LTD, Dali, 671000, Yunnan, China
| | - Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Xiaomei Chu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Nanqi Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; School of Environment, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| |
Collapse
|
2
|
Chen Z, Song B, Guo H, Xia D, Cai Y, Wang Y, Zhao W. Metagenomic characterization of biomethane transformation by lipid-catalyzed anaerobic fermentation of lignite. ENVIRONMENTAL RESEARCH 2023; 227:115777. [PMID: 36966989 DOI: 10.1016/j.envres.2023.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The present study aims at using lipid in a novel way to improve the efficiency of methane production from lignite anaerobic digestion. The obtained results showed an increase by 3.13 times of the cumulative biomethane content of lignite anaerobic fermentation, when 1.8 g lipid was added. The gene expression of functional metabolic enzymes was also found to be enhanced during the anaerobic fermentation. Moreover, the enzymes related to fatty acid degradation such as long-chain Acyl-CoA synthetase and Acyl-CoA dehydrogenase were increased by 1.72 and 10.48 times, respectively, which consequently, accelerated the conversion of fatty acid. Furthermore, the addition of lipid enhanced the carbon dioxide trophic and acetic acid trophic metabolic pathways. Hence, the addition of lipids was argued to promote the production of methane from lignite anaerobic fermentation, which provided a new insight for the conversion and utilization of lipid waste.
Collapse
Affiliation(s)
- Zhenhong Chen
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China.
| | - Bo Song
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Dapin Xia
- Mining Research Institute of Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yidong Cai
- School of Energy Resources, China University of Geosciences, Beijing, 100083, China.
| | - Yongjun Wang
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Weizhong Zhao
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
3
|
Farhan BA, Zhihe L, Ali S, Shah TA, Zhiyu L, Zhang A, Javed S, Asad M. Multiple strategies for the development of multienzyme complex for one-pot reactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64904-64931. [PMID: 37097560 DOI: 10.1007/s11356-023-27098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The main intention in the modern era is to make life and activities on earth more comfortable by adding necessary products through biological machinery. Millions of tons of biological raw materials and lignocellulosic biomass are wasted by burning each year without providing benefits to living organisms. Instead of being the cause of disturbing the natural environment by increasing global warming and pollutants worldwide, now, it is the need of the hour to develop an advanced strategy to utilize these biological raw materials to produce renewable energy resources to meet the energy crisis. The review presents the idea of multiple enzymes in one step to hydrolyze complex biomaterials into useful products. The paper discusses how multiple enzymes are arranged in a cascade for complete hydrolysis of raw material in one-pot to prevent multistep, time consuming, and expensive methods. Furthermore, there was the immobilization of multiple enzymes in a cascade system with in vitro and in vivo conditions for reusability of enzymes. The role of genetic engineering, metabolic engineering, and random mutation techniques is described for the development of multiple enzyme cascades. Techniques that are involved in the improvement of native strain to recombinant strain for the enhancement of hydrolytic capacity were used. The preparative steps, before enzymatic hydrolysis like acid, and base treatment methods are more effective for improving the hydrolysis of biomass by multiple enzymes in a one-pot system. Finally, the applications of one-pot multienzyme complexes in biofuel production from lignocellulosic biomass, biosensor production, medicine, food industry, and the conversion of biopolymers into useful products are described.
Collapse
Affiliation(s)
- Bahzad Ahmad Farhan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Li Zhihe
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Shehbaz Ali
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China.
| | - Li Zhiyu
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Andong Zhang
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Asad
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|