1
|
Nabi AA, Nema AK. An in-depth analysis of factors and forecasting techniques for emerging solid waste streams. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122037. [PMID: 39083941 DOI: 10.1016/j.jenvman.2024.122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Technological advances have led to the generation of novel streams of solid wastes, comprising materials previously excluded from traditional waste considerations. The absence of proper handling and management policies for these Emerging Solid Waste Streams (ESWSs) poses a great cause of concern. Proper estimation of current and future quantities is necessary for efficient policy making. This study, through a systematic literature review, analyses forecasting models for four major ESWSs: PV waste, e-waste, battery waste, and biomedical waste. A total of 40 modelling methodologies which successfully forecast the quantities of these ESWSs are identified and analyzed in this review. These highly heterogeneous models are classified into several crucial categories based on the modelling method, independent variable, geographical scale and data type involved. This categorization proves to be pivotal in the selection of an appropriate forecasting model. Around 40 modelling methods and 100+ independent variables, crucial for a successful forecast are identified and categorized. This study also focuses on the uncertainty involved in input data, a factor contributing to inaccurate predictions. It further entails identifying and analysing potential data sources, examining the rationale behind their selection, and providing recommendations for choosing suitable data sources. Beyond analysis, potential future areas of research and gaps involved in the field of forecasting ESWSs have also been highlighted. Serving as a valuable guide for beginners, the research also proposes a methodology to navigate the intricacies of forecasting ESWSs, contributing to both our understanding of forecasting models and the development of robust waste management policies in the evolving technological landscape.
Collapse
Affiliation(s)
- Amim Altaf Nabi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Arvind Kumar Nema
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Lu Z, Bai H, Liang L, Chen S, Yu H, Quan X. MgO-loaded tubular ceramic membrane with spatial nanoconfinement for enhanced catalytic ozonation in refractory wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134842. [PMID: 38852246 DOI: 10.1016/j.jhazmat.2024.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Heterogeneous catalytic ozonation (HCO) enables the destruction of organic pollutants in wastewater via oxidation by powerful hydroxyl radicals (·OH). However, the availability of short-lived ·OH in aqueous bulk is low in practical treatment scenarios due to mass transfer limitations and quenching of water constituents. Herein, we overcome these challenges by loading MgO catalysts inside the pores of a tubular ceramic membrane (denoted as CCM) to confine ·OH within the nanopores and achieve efficient pollutant removal. When the pore size of the membrane was reduced from 1000 to 50 nm, the removal of ibuprofen (IBU) by CCM was increased from 49.6 % to 90.2 % due to the enhancement of ·OH enrichment in the nanospace. In addition, the CCM exhibited high catalytic activity in the presence of co-existing ions and over a wide pH range, as well as good self-cleaning ability in treating secondary wastewater. The experimental results revealed that ·OH were the dominant reactive oxygen species (ROS) in pollutant degradation, while surface hydroxyl groups were active sites for the generation of ·OH via ozone decomposition. This work provides a promising strategy to enhance the utilization of ·OH in HCO for the efficient degradation of organic pollutants in wastewater under spatial confinement.
Collapse
Affiliation(s)
- Zijie Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Haokun Bai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Lanlan Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
3
|
Ponce J, Peña J, Sanz D, Pastor JM. Optimization of TiO 2-natural hydrogels for paracetamol and ibuprofen degradation in wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49823-49836. [PMID: 39085694 DOI: 10.1007/s11356-024-34469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Agarose/micrometer titanium dioxide (TiO2) beads were essayed to test the photocatalytic capacity of two of the most widely prescribed drugs worldwide: paracetamol and ibuprofen. Although the initial tests demonstrated promising degradation rates for both drugs, the presence of turbidity, due to TiO2 leakage, during the photocatalytic essays induced to improve the stability of the photocatalytic composites. Among the different strategies adopted to strengthen such materials, crosslinking with citric acid and the use of alternative gelling agents: gellan, agargel™, and agar were chosen. Composites obtained by merging both strategies were characterized and employed to degrade both drugs under a simulated light that mimics the solar spectrum (indoor). Considering the superior degradation rates obtained when agar and agarose were used to shape the titanium oxide particles (up to 70-75% of drug destruction), such composites were subjected to a more realistic experiment (outdoor): solar illumination, tap water, and higher volumes, that should facilitate its ulterior scale up as a real wastewater depollution procedure. Degradation rates between 80 and 90% are attained under such conditions for both drugs.
Collapse
Affiliation(s)
- José Ponce
- Polytechnic School of Cuenca (EPC), University of Castilla-La Mancha (UCLM), Campus Universitario S/N, 16170, Cuenca, Spain
| | - Juan Peña
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid (UCM), Ciudad Universitaria S/N, 28040, Madrid, Spain.
| | - David Sanz
- Hydrogeology Group, Institute for Regional Development (IDR), University of Castilla-La Mancha (UCLM), Campus Universitario S/N, 02071, Albacete, Spain
| | - José M Pastor
- Polytechnic School of Cuenca (EPC), University of Castilla-La Mancha (UCLM), Campus Universitario S/N, 16170, Cuenca, Spain
| |
Collapse
|
4
|
Sharma M, Sajwan D, Gouda A, Sharma A, Krishnan V. Recent progress in defect-engineered metal oxides for photocatalytic environmental remediation. Photochem Photobiol 2024; 100:830-896. [PMID: 38757336 DOI: 10.1111/php.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Rapid industrial advancement over the last few decades has led to an alarming increase in pollution levels in the ecosystem. Among the primary pollutants, harmful organic dyes and pharmaceutical drugs are directly released by industries into the water bodies which serves as a major cause of environmental deterioration. This warns of a severe need to find some sustainable strategies to overcome these increasing levels of water pollution and eliminate the pollutants before being exposed to the environment. Photocatalysis is a well-established strategy in the field of pollutant degradation and various metal oxides have been proven to exhibit excellent physicochemical properties which makes them a potential candidate for environmental remediation. Further, with the aim of rapid industrialization of photocatalytic pollutant degradation technology, constant efforts have been made to increase the photocatalytic activity of various metal oxides. One such strategy is the introduction of defects into the lattice of the parent catalyst through doping or vacancy which plays a major role in enhancing the catalytic activity and achieving excellent degradation rates. This review provides a comprehensive analysis of defects and their role in altering the photocatalytic activity of the material. Various defect-rich metal oxides like binary oxides, perovskite oxides, and spinel oxides have been summarized for their application in pollutant degradation. Finally, a summary of existing research, followed by the existing challenges along with the potential countermeasures has been provided to pave a path for the future studies and industrialization of this promising field.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
5
|
Vargas-Berrones K, Ocampo-Perez R, Rodríguez-Torres I, Medellín-Castillo NA, Flores-Ramírez R. Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90741-90756. [PMID: 37462867 DOI: 10.1007/s11356-023-28653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/02/2023] [Indexed: 08/24/2023]
Abstract
Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.
Collapse
Affiliation(s)
- Karla Vargas-Berrones
- Instituto Tecnológico Superior de Rioverde, Ma del Rosario, San Ciro de Acosta-Rioverde 165, CP 79610, Rioverde, SLP, Mexico
| | - Raul Ocampo-Perez
- Centro de Investigación Y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Israel Rodríguez-Torres
- Instituto de Metalurgia-Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, 78210, San Luis Potosí, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava No. 8, 78290, San Luis Potosí, SLP, Mexico
| | - Rogelio Flores-Ramírez
- Coordinación Para La Innovación Y Aplicación de La Ciencia Y La Tecnología (CIACYT), Colonia Lomas Segunda Sección, Avenida Sierra Leona No. 550, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
6
|
Occurrence of Selected Emerging Contaminants in Southern Europe WWTPs: Comparison of Simulations and Real Data. Processes (Basel) 2022. [DOI: 10.3390/pr10122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid and 17α-ethinylestradiol) were monitored for nine months in influents and effluents taken from four wastewater treatment plants (WWTPs). Except for the case of ibuprofen, which was in all cases in lower concentrations than those usually found in previous works, results found in this work were within the ranges normally reported. Global removal efficiencies were calculated, in each case being very variable, even when the same EC and facility were considered. In addition, the SimpleTreat model was tested by comparing simulated and real ibuprofen, diclofenac and erythromycin data. The best agreement was obtained for ibuprofen which was the EC with the highest removal efficiencies.
Collapse
|
7
|
Fan G, Cai C, Yang S, Du B, Luo J, Chen Y, Lin X, Li X, Wang Y. Sonophotocatalytic degradation of ciprofloxacin by Bi2MoO6/FeVO4 heterojunction: Insights into performance, mechanism and pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|