1
|
Omoregie AI, Ong DEL, Alhassan M, Basri HF, Muda K, Ojuri OO, Ouahbi T. Two decades of research trends in microbial-induced carbonate precipitation for heavy metal removal: a bibliometric review and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52658-52687. [PMID: 39180660 DOI: 10.1007/s11356-024-34722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Amidst the increasing significance of innovative solutions for bioremediation of heavy metal removal, this paper offers a thorough bibliometric analysis of microbial-induced carbonate precipitation (MICP) for heavy metal removal, as a promising technology to tackle this urgent environmental issue. This study focused on articles published from 1999 to 2022 in the Scopus database. It assesses trends, participation, and key players within the MICP for heavy metal sequestration. Among the 930 identified articles, 74 countries participated in the field, with China being the most productive. Varenyam Achal, the Chinese Academy of Sciences, and Chemosphere are leaders in the research landscape. Using VOSviewer and R-Studio, keyword hotspots like "MICP", "urease", and "heavy metals" underscore the interdisciplinary nature of MICP research and its focus on addressing a wide array of environmental and soil-related challenges. VOSviewer emphasises essential terms like "calcium carbonate crystal", while R-Studio highlights ongoing themes such as "soil" and "organic" aspects. These analyses further showcase the interdisciplinary nature of MICP research, addressing a wide range of environmental challenges and indicating evolving trends in the field. This review also discusses the literature concerning the potential of MICP to immobilise contaminants, the evolution of the research outcome in the last two decades, MICP treatment techniques for heavy metal removal, and critical challenges when scaling from laboratory to field. Readers will find this analysis beneficial in gaining valuable insights into the evolving field and providing a solid foundation for future research and practical implementation.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, School of Built Environment, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia
| | - Dominic Ek Leong Ong
- School of Engineering and Built Environment, Griffith University, 170 Kessels Rd Nathan, South East Queensland, QLD, 4111, Australia
| | - Mansur Alhassan
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hazlami Fikri Basri
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST), Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Tariq Ouahbi
- LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université, 53 Rue de Prony, 76058, Le Havre Cedex, France
| |
Collapse
|
2
|
Dai J, Wen D, Li H, Yang J, Rao X, Yang Y, Yang J, Yang C, Yu J. Effect of hydrogen sulfide (H 2S) on the growth and development of tobacco seedlings in absence of stress. BMC PLANT BIOLOGY 2024; 24:162. [PMID: 38429726 PMCID: PMC10908218 DOI: 10.1186/s12870-024-04819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a novel signaling molecule involved in the growth and development of plants and their response to stress. However, the involvement of H2S in promoting the growth and development of tobacco plants is still unclear. RESULTS In this study, we explored the effect of pre-soaking or irrigating the roots of tobacco plants with 0.0, 2.0, 4.0, 6.0, and 8.0 mM of sodium hydrosulfide (NaHS) on endogenous H2S production, antioxidant enzymatic and cysteine desulfhydrase activities, seed germination, agronomic traits, photosynthetic pigments contents, and root vigor. The results revealed that exogenous NaHS treatment could significantly promote endogenous H2S production by inducing gene expression of D/L-CD and the activities of D/L-CD enzymes. Additionally, a significant increase in the agronomic traits and the contents of photosynthetic pigments, and no significant difference in carotenoid content among tobacco plants treated with 0.0 to 8.0 mM of NaHS was observed. Additionally, a significant increase in the germination speed, dry weight, and vigor of tobacco seeds, whereas no significant effect on the percentage of seed germination was observed on NaHS treatment. Furthermore, NaHS treatment could significantly increase the activity of superoxide dismutase (SOD) and peroxidase (POD) enzymes, which reduces damage due to oxidative stress by maintaining reactive oxygen species homeostasis. CONCLUSIONS These results would aid in enhancing our understanding of the involvement of H2S, a novel signaling molecule to promote the growth and development of tobacco plants.
Collapse
Affiliation(s)
- Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dingxin Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China
| | - Jingpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China
| | - Xiongfei Rao
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430024, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China.
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China.
| |
Collapse
|
3
|
Wei T, Gao H, An F, Ma X, Hua L, Guo J. Performance of heavy metal-immobilizing bacteria combined with biochar on remediation of cadmium and lead co-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6009-6026. [PMID: 37204552 DOI: 10.1007/s10653-023-01605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Heavy metal pollution of soil has become a public concern worldwide since it threats food safety and human health. Sustainable and environmental-friendly remediation technology is urgently needed. Therefore, we investigated the properties and heavy metal removal ability of Enterobacter asburiae G3 (G3), Enterobacter tabaci I12 (I12), and explored the feasibility of remediation Cd, Pb co-contaminated soil by the combination of G3/I12 and biochar. Our results indicated that both strains are highly resistant to Cd, Pb and maintain plant growth-promoting properties. The removal efficiency of G3 for Cd and Pb were 76.79-99.43%, respectively, while the removal efficiency of I12 for Cd and Pb were 62.57-99.55%, respectively. SEM-EDS and XRD analysis revealed that the morphological and structural changes occurred upon heavy metal exposure, metal precipitates were also detected on cell surface. FTIR analysis indicated that functional groups (-OH, -N-H, -C = O, -C-N, -PO4) were involved in Cd/Pb immobilization. Application of the bacteria, biochar, or their combination decreased the acid-extractable Cd, Pb in soil while increased the residual fractions, meanwhile, the bioavailability of both metal elements declined. Besides, these treatments increased soil enzyme (sucrase, catalase and urease) activity and accelerated pakchoi growth, heavy metal accumulation in pakchoi was depressed upon bacteria and/or biochar application, and a synergistic effect was detected when applying bacteria and biochar together. In BC + G3 and BC + I12 treated plants, the Cd and Pb accumulation decreased by 24.42% and 52.19%, 17.55% and 47.36%, respectively. Overall, our study provides an eco-friendly and promising in situ technology that could be applied in heavy metal remediation.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Han Gao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Fengqiu An
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiulian Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
4
|
Contreras MJ, Leal K, Bruna P, Nuñez-Montero K, Goméz-Espinoza O, Santos A, Bravo L, Valenzuela B, Solis F, Gahona G, Cayo M, Dinamarca MA, Ibacache-Quiroga C, Zamorano P, Barrientos L. Commonalities between the Atacama Desert and Antarctica rhizosphere microbial communities. Front Microbiol 2023; 14:1197399. [PMID: 37538842 PMCID: PMC10395097 DOI: 10.3389/fmicb.2023.1197399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Plant-microbiota interactions have significant effects on plant growth, health, and productivity. Rhizosphere microorganisms are involved in processes that promote physiological responses to biotic and abiotic stresses in plants. In recent years, the interest in microorganisms to improve plant productivity has increased, mainly aiming to find promising strains to overcome the impact of climate change on crops. In this work, we hypothesize that given the desertic environment of the Antarctic and the Atacama Desert, different plant species inhabiting these areas might share microbial taxa with functions associated with desiccation and drought stress tolerance. Therefore, in this study, we described and compared the composition of the rhizobacterial community associated with Deschampsia antarctica (Da), Colobanthus quitensis (Cq) from Antarctic territories, and Croton chilensis (Cc), Eulychnia iquiquensis (Ei) and Nicotiana solanifolia (Ns) from coastal Atacama Desert environments by using 16S rRNA amplicon sequencing. In addition, we evaluated the putative functions of that rhizobacterial community that are likely involved in nutrient acquisition and stress tolerance of these plants. Even though each plant microbial rhizosphere presents a unique taxonomic pattern of 3,019 different sequences, the distribution at the genus level showed a core microbiome with a higher abundance of Haliangium, Bryobacter, Bacillus, MND1 from the Nitrosomonadaceae family, and unclassified taxa from Gemmatiamonadaceae and Chitinophagaceae families in the rhizosphere of all samples analyzed (781 unique sequences). In addition, species Gemmatirosa kalamazoonesis and Solibacter usitatus were shared by the core microbiome of both Antarctic and Desert plants. All the taxa mentioned above had been previously associated with beneficial effects in plants. Also, this microbial core composition converged with the functional prediction related to survival under harsh conditions, including chemoheterotrophy, ureolysis, phototrophy, nitrogen fixation, and chitinolysis. Therefore, this study provides relevant information for the exploration of rhizospheric microorganisms from plants in extreme conditions of the Atacama Desert and Antarctic as promising plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- María José Contreras
- Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Karla Leal
- Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Pablo Bruna
- Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Kattia Nuñez-Montero
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
- Biotechnology Research Center, Instituto Tecnológico de Costa Rica, Cártago, Costa Rica
| | - Olman Goméz-Espinoza
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Andrés Santos
- Universitat Autònoma de Barcelona, Departament de Genètica i de Microbiologia, Institut Biotecnologia i de Biomedicina, Cerdanyola del Vallès, Barcelona, Spain
| | - León Bravo
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural Sciences and Environment, Universidad de La Frontera, Temuco, Chile
| | - Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Francisco Solis
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Giovanni Gahona
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Mayra Cayo
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - M. Alejandro Dinamarca
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudia Ibacache-Quiroga
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Micro-Bioinnovación, Universidad de Valparaíso, Valparaíso, Chile
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Leticia Barrientos
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
| |
Collapse
|