1
|
Li H, Zhong L, Wang L, Geng N, Xing W, Wang Z, Shi L, Sun S. Legacy and novel brominated flame retardants in outdoor settled dusts and pine needles in a megacity of Eastern China: Interpretation of plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175488. [PMID: 39147053 DOI: 10.1016/j.scitotenv.2024.175488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Brominated flame retardants, considered emerging contaminants, are widespread and persist in the environment. This study investigated the contamination of legacy and novel brominated flame retardants in paired outdoor settled dusts and pine needles sampled from a megacity in the Eastern China. The measured total concentrations of PBDEs (∑27PBDEs) in outdoor settled dusts and pine needles were in the range of 77.4-345.2 ng/g dw and 20.7-120.0 ng/g dw, respectively, and equivalent ranges for novel brominated flame retardants (∑11NBFRs) were 25.7-1917.2 ng/g dw and 9.4-38.7 ng/g dw, respectively. BDE-209 and DBDPE dominated PBDEs and NBFRs profiles, respectively, in both dusts and pine needles. Outdoor settled dusts exhibited greater potentials to accumulate high-brominated PBDE homologues and EH-TBB while pine needles tended to accumulate low-brominated PBDE homologues, BTBPE and TBC. The plant uptake of BFRs was interpreted by McLachlan's framework on the assumption that the levels of BFRs in outdoor settled dusts and particle phase of air were positively correlated. The accumulation of PBDEs in pine needles was dominated by equilibrium partitioning between the vegetation and the gas phase when log KOA values <10 and by particle-bound deposition when log KOA values >13. However, NBFRs exhibited more complicated accumulation behavior. The predicted 50th percentile of the estimated daily intakes of ∑27PBDEs via outdoor settled dusts exposure for adults and children were 3.5 × 10-2 and 1.4 × 10-1 ng/kg body weight (bw)/day, respectively, and equivalent values for ∑11NBFRs were 1.6 × 10-2 ng/kg bw/day and 6.3 × 10-2 ng/kg bw/day, respectively. The calculated hazard index (HI) values were far <1, indicating exposure of BFRs via outdoor settled dust intake would not pose potential non-carcinogenic health risks to both adults and children.
Collapse
Affiliation(s)
- He Li
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Liangchen Zhong
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lei Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weilong Xing
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhen Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Lili Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
2
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
3
|
Gong S, Huang J, Wang J, Lv M, Deng Y, Su G. Seasonal variations of organophosphate esters (OPEs) in atmospheric deposition, and their contribution to soil loading. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134845. [PMID: 38876016 DOI: 10.1016/j.jhazmat.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate esters (OPEs) are ubiquitous in surface soil, and atmospheric deposition is considered to be the major pollution source. However, the research on the environmental transport behaviors of OPEs between atmospheric deposition and soil is very limited. In this study, we investigated the contamination levels and seasonal variations of OPEs in atmospheric deposition samples (n = 33) collected from an area of South China every month between February 2021 and January 2022, and evaluated the contribution of OPEs in atmospheric deposition to soil. The concentrations of ∑21target-OPEs ranged from 3670 to 18,600 ng/g dry weight (dw), with a mean of 8200 ng/g dw (median: 7600 ng/g dw). ∑21target-OPEs concentrations in all atmospheric deposition samples exhibited significant seasonal differences (p < 0.05) with higher concentrations observed in winter and lower concentrations in summer. Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was the most dominant target OPE in atmospheric deposition (4870 ng/g dw), and its seasonal variation trend was consistent with ∑21OPEs (p < 0.05). Simultaneously, in order to further explore the effect of atmospheric deposition on the levels of OPEs in soil of the study region, input fluxes and accumulation increments were estimated. Ten OPEs (including seven target OPEs and three suspect OPEs) exhibited high input flux means and accumulation increments, indicating that these compounds are prone to accumulate in soil via atmospheric deposition. It is noteworthy that the non-target phosphonate analyte bis(2,4-di-tert-butylphenyl) dibutyl ethane-1,2-diylbis(phosphonate) (BDTBPDEDBP) was detected at highest median concentration (8960 ng/g dw) in atmospheric deposition. Correspondingly, the average input flux and accumulation increment of BDTBPDEDBP were higher than those of all target and suspect OPEs. Collectively, this study quantifies the environmental transport behavior of OPEs between atmospheric deposition and soil, and provides new evidences for the fact that atmospheric deposition is the important pollution source of OPEs in soil.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Jun Wang
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Mingchao Lv
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou 510045, China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Stelzer VB, da Silva AA, Penteado CSG, Cristale J. Organophosphate esters in inert landfill soil: A case study. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:583-590. [PMID: 37638685 DOI: 10.1177/0734242x231190813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Organophosphate esters (OPEs) used as flame retardants and plasticizers are additives in building and construction materials, decorations, furniture, electronic equipment, among other applications. The presence of materials containing these substances in construction and demolition waste (CDW) from weak waste management practices can result in environmental contamination. In this study, OPEs' presence in soil samples collected from a CDW landfill in Brazil was evaluated. Soil samples were collected in areas adjacent to CDW from an inert landfill, and the samples were analysed by gas chromatography coupled to mass spectrometry. The OPEs were detected in all soil samples at quantifiable concentrations ranging from 21 to 251 ng g-1, and detected compounds were tris(phenyl) phosphate, tris(2-butoxyethyl) phosphate, tris(1,3-dichloroisopropyl) phosphate, tris(2-chloroisopropyl) phosphate and 2-ethylhexyl diphenyl phosphate. The presence of these compounds in a CDW landfill is probably due to the lack of control of the materials sent to and deposited in the landfill, which, results in part from the lack of sampling and screening systems that can help identify the presence of contaminants in the CDW waste stream. This is partially due to OPEs not being considered controlled compounds under current regulations, thus screening or separation for handling of OPEs at construction and demolition work sites is rare to non-existent. The data generated in this study reveals the need for improving CDW management to minimize, if not eliminate, environmental contamination by OPEs.
Collapse
Affiliation(s)
| | | | | | - Joyce Cristale
- School of Technology, University of Campinas, Limeira, Sao Paulo, Brazil
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
5
|
Dvoršćak M, Živančev J, Jagić K, Buljovčić M, Antić I, Đurišić-Mladenović N, Klinčić D. Contamination levels, influencing factors, and risk assessment of polybrominated diphenyl ethers in house dust of northern Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25033-25045. [PMID: 38466382 DOI: 10.1007/s11356-024-32836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of compounds that, due to their applications, are considered mainly indoor contaminants. To obtain the first information about the presence of PBDEs in Serbia, dust samples (n = 50) were collected in settlements in the northern Serbian province of Vojvodina. The selected/target congeners (BDE-28, 47, 99, 100, 153, 154, and 183) were extracted from house dust by microwave-assisted extraction technique, and purified extracts were analyzed on a dual-column gas chromatograph with micro-electron capture detectors. A wide range of ΣPBDEs was detected (0.295 to 394 ng g-1 dust), which reflects large differences in contamination among the examined homes. For the majority of samples (72%), ΣPBDEs were lower than 5 ng g-1 indicating that people living in Vojvodina province are exposed to low concentrations of PBDEs present in their households. Based on principal component analysis (PCA), balcony areas and age of the house positively correlate with the PBDE congeners with higher detection frequencies (≥ 50%), namely, with BDE-99, BDE-153, and BDE-183. Statistically significant positive correlation (p < 0.01) was obtained for BDE-99 and the number of household's members. Estimated daily intakes (EDItot) were calculated for ingestion and dermal absorption of dust for two age groups-adults and toddlers. These are the first data on PBDE status in the area of the Western Balkan, and the health risk assessment indicates that PBDE levels obtained in household dust do not pose a risk for human health.
Collapse
Affiliation(s)
- Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia.
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| |
Collapse
|
6
|
Yun J, Zhang Q, Dou M, Wang L. Characteristics, sources, bio-accessibility, and health risks of organophosphate esters in urban surface dust, soil, and dustfall in the arid city of Urumqi in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169125. [PMID: 38070564 DOI: 10.1016/j.scitotenv.2023.169125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Sixty-eight paired samples of urban surface dust and soil as well as four samples of atmospheric dustfall were collected from the arid city of Urumqi in Northwest China. Thirteen organophosphate esters (OPEs) in these samples were analyzed for the characteristics, sources, bio-accessibility, and health risks of OPEs. The studied OPEs were widely detected in the urban surface dust, soil, and dustfall, with Σ13OPEs (total concentration of 13 OPEs) of 1362, 164.0, and 1367 ng/g, respectively, dominated by tris(2-chloroethyle) phosphate (TCEP), tri(2-chloroisopropyl) phosphate (TCiPP), tri(1, 3-dichloroisopropyl) phosphate (TDCiPP) and tris(2-butoxyethyl) phosphate (TBOEP), TBOEP and tri(2-ethylhexyl) phosphate (TEHP), and TCEP, TCiPP, TBOEP, triphenyl phosphate and TEHP, respectively. The low and high frequency magnetic susceptibility of surface dust and urban soil might indicate the pollution of OPEs in them. Elevated levels of the Σ13OPEs in the surface dust and urban soil were found in the west, south, and northeast of Urumqi city. The total deposition flux of dustfall-bound 13 OPEs ranged from 86.5 to 143 ng/m2/day, with a mean of 105 ng/m2/day. OPEs in the surface dust and urban soil were associated with the emissions of indoor and outdoor products containing OPEs, the dry and wet deposition of atmosphere, and the emissions of traffic. Trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tri-isobutyl phosphate, TCEP, TCiPP, TDCiPP, and TBOEP in surface dust and urban soil had relatively high bio-accessibility. The bio-accessibility of OPEs was mainly affected by the physio-chemical properties of OPEs. The non-cancer and cancer risks of human exposure to OPEs in surface dust and urban soil were relatively low or negligible. The current research results may provide scientific supports for prevention and control of pollution and risks of OPEs.
Collapse
Affiliation(s)
- Jiang Yun
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Mingshan Dou
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Liu B, Ding L, Lv L, Yu Y, Dong W. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure. CHEMOSPHERE 2023; 345:140560. [PMID: 37898464 DOI: 10.1016/j.chemosphere.2023.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
In recent years, the indoor exposure of organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) has received widespread attention worldwide. Using published data on 6 OPEs in 23 countries (n = 1437) and 2 NBFRs in 18 countries (n = 826) in indoor dust, this study systematically reviewed the concentrations, spatial distribution, sources and exposure risk of 8 flame retardants (FRs) worldwide. Tris(chloroisopropyl)phosphate (TCIPP) is the predominant FR with a median concentration of 1050 ng g-1 ΣCl-OPEs are significantly higher than Σnon-Cl-OPEs (p < 0.05). ΣOPEs in indoor dust from industrially-developed countries are higher than those from the countries lacking industrial development. Household appliances, electronics and plastic products are the main sources of non-Cl-OPEs and NBFRs, while interior decorations and materials contribute abundant Cl-OPEs in indoor dust. The mean hazard index (HI) of TCIPP for children is greater than 1, possibly posing non-cancer risk for children in some countries. The median ILCRs for 3 carcinogenic OPEs are all less than 10-6, suggesting no cancer risk induced by these compounds for both adults and children. This review helps to understand the composition, spatial pattern and human exposure risk of OPEs and NBFRs in indoor dust worldwide.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
8
|
Saraga DΕ, Querol X, Duarte RMBO, Aquilina NJ, Canha N, Alvarez EG, Jovasevic-Stojanovic M, Bekö G, Byčenkienė S, Kovacevic R, Plauškaitė K, Carslaw N. Source apportionment for indoor air pollution: Current challenges and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165744. [PMID: 37487894 DOI: 10.1016/j.scitotenv.2023.165744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field. The majority (78 %) of SA studies to date focused on PM chemical composition/size distribution, with fewer studies covering organic compounds such as ketones, carbonyls and aldehydes. Regarding the SA method used, the majority of studies have used Positive Matrix Factorization (31 %), Principal Component Analysis (26 %) and Chemical Mass Balance (7 %) receptor models. The indoor PM sources identified to date include building materials and furniture emissions, indoor combustion-related sources, cooking-related sources, resuspension, cleaning and consumer products emissions, secondary-generated pollutants indoors and other products and activity-related emissions. The outdoor environment contribution to the measured pollutant indoors varies considerably (<10 %- 90 %) among the studies. Future challenges for this research area include the need for optimization of indoor air quality monitoring and data selection as well as the incorporation of physical and chemical processes in indoor air into source apportionment methodology.
Collapse
Affiliation(s)
- Dikaia Ε Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Noel J Aquilina
- Department of Chemistry - Faculty of Science, Chemistry Building, University of Malta, Malta
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Elena Gómez Alvarez
- Department of Agronomy, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Milena Jovasevic-Stojanovic
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Gabriel Bekö
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Healthy and Sustainable Built Environment Research Centre, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Steigvilė Byčenkienė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Kristina Plauškaitė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK
| |
Collapse
|
9
|
Ma X, Kuang L, Wang X, Zhang Z, Chen C, Ding P, Chi B, Xu J, Tuo X. Investigation on the interaction of aromatic organophosphate flame retardants with human serum albumin via computer simulations, multispectroscopic techniques and cytotoxicity assay. Int J Biol Macromol 2023; 247:125741. [PMID: 37423437 DOI: 10.1016/j.ijbiomac.2023.125741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Organophosphate flame retardants (OPFRs) are newly emerging estrogenic environmental pollutants, which attracted widespread public interest owing to their potential threats to human. Here, the interaction between two typical aromatic OPFRs, TPHP/EHDPP and HSA was researched by different experiments. Experimental results indicated that TPHP/EHDPP can insert the site I of HSA and be encircled by several amino acid residues, Asp451, Glu292, Lys195, Trp214 and Arg218 played vital roles in this binding process. At 298 K, the Ka value of TPHP-HSA complex was 5.098 × 104 M-1, and the Ka value of EHDPP-HSA was 1.912 × 104 M-1. Except H-bonds and van der Waals forces, the π-electrons on the phenyl ring of aromatic-based OPFRs played a pivotal role in maintaining the stability of the complexes. The content alterations of HSA were observed in the present of TPHP/EHDPP. The IC50 values of TPHP and EHDPP were 157.9 μM and 31.14 μM to GC-2spd cells, respectively. And the existence of HSA has a regulatory effect on the reproductive toxicity of TPHP/EHDPP. In addition, the results of present work implied Ka values of OPFRs and HSA are possible to be a useful parameter for evaluating their relative toxicity.
Collapse
Affiliation(s)
- Xiulan Ma
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowei Wang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Zihang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Junying Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
10
|
Dou M, Wang L. A review on organophosphate esters: Physiochemical properties, applications, and toxicities as well as occurrence and human exposure in dust environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116601. [PMID: 36326529 DOI: 10.1016/j.jenvman.2022.116601] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in the world. The use of OPEs has increased rapidly due to the prohibition of polybrominated diphenyl ethers. However, OPEs are mainly added to various materials by physical mixing, they are therefore easy to be released into the environment through volatilization, leaching, and abrasion during their production, use, transportation, and after disposal. Dust, as an important medium for human exposure to OPEs, has attracted extensive attention. Here, this article reviewed the current knowledge on the physiochemical properties, consumptions and applications, and ecotoxicities of OPEs, also synthesized the available data on the occurrence of 13 OPEs in outdoor and indoor dust environments around the world over the past decade. The results showed that the sum of OPEs (ΣOPEs) was the highest in outdoor dust from an e-waste disposal area in Tianjin of China (range: 1390-42700 ng/g dw; mean: 11500 ng/g dw). The highest ΣOPEs was found in Japan for home dust (range: 9300-11000000 ng/g dw; mean: 266543 ng/g dw), Sweden for office dust (range: 14000-1600000 ng/g dw; mean: 360100 ng/g dw) and daycare center dust (range: 40000-4600000 ng/g dw; mean: 1990800 ng/g dw), and Brazil for car dust (range: 108000-2050000 ng/g dw; mean: 541000 ng/g dw). The use pattern of OPEs differed in different regions and countries. The exposure and risk assessment based on the data of OPEs in home dust indicated that the average daily intakes of OPEs via dust ingestion for children and adults were lower than the corresponding reference doses; and that the current human exposure to OPEs through indoor dust ingestion were not likely to pose risks to human health. Finally, the review pointed out the gaps of current research and provided the directions for further study on OPEs in dust environment.
Collapse
Affiliation(s)
- Mingshan Dou
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Wang
- Department of Environmental Science and Engineering, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
11
|
Guo X, Wu B, Xia W, Gao J, Xie P, Feng L, Sun C, Liang M, Ding X, Zhao D, Ma S, Liu H, Lowe S, Bentley R, Huang C, Qu G, Sun Y. Association of organophosphate ester exposure with cardiovascular disease among US adults: Cross-sectional findings from the 2011-2018 National Health and Nutrition Examination Survey. CHEMOSPHERE 2022; 308:136428. [PMID: 36115470 DOI: 10.1016/j.chemosphere.2022.136428] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers worldwide. Therefore, the potentially deleterious effect of OPE on human beings deserves extensive attention. The primary objective of this present study was to untangle the relationship between OPE exposure and cardiovascular disease (CVD) among general population. Detailed information about participants' baseline characteristics, involving socioeconomic data, demographic data and key covariates was obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2018. Multivariate logistic regression models with adjustment for prior-determined covariates were utilized to examine the relationship between various OPEs and CVD among US adults and calculate odd ratios (ORs) and corresponding confidence intervals (CIs). Two multi-pollutant statistical strategies (weighted quantile sum regression and Bayesian kernel machine regression) were employed to investigate the joint effect of OPE mixture on CVD. A total of 5067 participants were included in this study. In completely-adjusted logistic model, the highest tertiles of OPE metabolites were positively associated with CVD risk, while the relationships did not reach statistical significance. The weighted quantile sum (WQS) index was significantly correlated with increased prevalence of CVD (adjusted OR: 1.25; CI: 1.02, 1.53, p value = 0.032) and Diphenyl phosphate (DPHP) was the greatest contributor (31.38%). The BKMR also indicated that mixed OPE exposure associated with an increased risk of CVD. Taken together, the present study demonstrated that there were possible links between OPE exposures and increased risk of CVD, while the relationships did not reach statistical significance. Our study provided the suggestive evidence that cumulative effect of OPE mixtures on CVD. DPHP may be a major driver of this positive association. Given the limitation of cross-sectional design and relatively limited kinds of OPE metabolites, further studies are warranted to longitudinally evaluate the potential effect of a wider range of OPEs on CVD or cardiac metabolism.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Christy Huang
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV, 89014, United States
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, China.
| |
Collapse
|