1
|
Hu R, Huang H, Chen H, Zhang J, Zhong Q, Wu X, Yang S. Phytotoxicity of metal-organic framework MOF-74(Co) nanoparticles to pea seedlings. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:710-720. [PMID: 38385295 DOI: 10.1039/d3em00503h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metal-organic framework (MOF) materials have unique structure and fantastic properties for wide-ranging applications. Pilot studies highlighted the toxicity and potential threats of MOF materials to the environment. In this study, we revealed the phytotoxicity of MOF-74(Co) nanoparticles (NPs) and their inhibitory effects on the photosynthesis of pea seedlings (Pisum sativum L.). MOF-74(Co) NPs have limited influences on the germination of pea seeds, but distinct environmental effects of MOF-74(Co) NPs were found in pea seedlings. The root length of pea seedlings, fresh weight and dry weight decreased by 50.0%, 29.2% and 36.4%, respectively, compared with the control group, when the material concentration was greater than 100 mg L-1. The net photosynthetic rate decreased by 48% and the intercellular CO2 concentration increased by 183% upon exposure to MOF-74(Co) NPs. Mechanistically, MOF-74(Co) exposure led to Co uptake in pea seedlings; the increases were 223% for the root, 267% for the stem and 6562% for the leaves, respectively, when the MOF-74(Co) NP concentration was 10 mg L-1. The released Co ions from MOF-74(Co) NPs caused oxidative damage to leaves and induced damage to the acceptor side of photosynthesis system II. Our results indicated that the environmental toxicity of MOF materials was largely regulated by the metal centers. MOF materials with nontoxic metal elements are desirable for future applications.
Collapse
Affiliation(s)
- Ruonan Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Heyu Huang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Hua Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Jiahao Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Xian Wu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| |
Collapse
|
2
|
He M, Feng L, Cui Q, Li Y, Wang J, Zhu J, Wang L, Wang X, Miao R. Forward osmosis membrane doped with water-based zirconium fumarate MOFs to enhance dye pollutant removal and membrane antifouling performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61018-61031. [PMID: 37046161 DOI: 10.1007/s11356-023-26670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
Metal-organic frameworks (MOFs) can be applied to enhance the property of forward osmosis membranes. However, organic solvents can easily remain in organic synthetic metal-organic frame materials and cause membrane fouling and a decrease in membrane permeability. In this study, water-based Zr-fumarate MOFs were synthesized and doped into the membrane active layer by interfacial polymerization to provide a water-based MOF-doped thin-film composite membrane (TFC membrane). It was found that doping the water-based MOFs effectively improved membrane hydrophilicity, and nanowater passages were introduced in the active layer to improve permeability. The water flux of the water-based MOF-doped TFC membranes was increased by 21% over that of the original membrane, and the selectivity performance of the membrane was improved while keeping the salt rejection basically unchanged. Additionally, the water-based MOF-doped TFC membrane showed good removal efficiency (Rd > 94%) and strong antipollution performance in the treatment of dye pollutants.
Collapse
Affiliation(s)
- Miaolu He
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Leihao Feng
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Qi Cui
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Yushuang Li
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiaqi Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiani Zhu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Lei Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Rui Miao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| |
Collapse
|