1
|
Kong M, Zhang Y, Ma Y, Fang H, Wang W, Shi G, Yan Y, Zhang S. Antibiotics and antibiotic resistance change bacterial community compositions in marine sediments. ENVIRONMENTAL RESEARCH 2024; 244:118005. [PMID: 38135101 DOI: 10.1016/j.envres.2023.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Emerging contaminants, including antibiotics, antibiotic-resistant bacteria (ARB), and extracellular antibiotic resistance genes (eARGs), have been detected in large numbers in the aquatic environment. The effects of emerging contaminants on bacterial communities in marine sediments are not well studied. In this study, the effects of emerging contaminants (antibiotics, ARB, and eARGs) on the variations of bacterial populations in marine sediments of the Bohai Sea, Yellow Sea, East China Sea, and South China Sea were investigated. The results showed that the abundance of the host bacterial phylum Probacteria in the marine sediments of the Bohai Sea was the lowest among the four seas after exposure to different antibiotics, ARB, and eARGs. The inputs of exogenous antibiotics and resistance genes significantly affected the community function, resulting in significant differences in community abundance at the genus level. The abundance of Halomonas, Sulfitobacter, and Alcanivorax in the four sea areas displayed noteworthy differences in response to the addition of exogenous antibiotics and eARGs. These findings contribute to a more comprehensive understanding of the intricate interplay between emerging contaminants and the dynamics of bacterial communities in natural ecosystems.
Collapse
Affiliation(s)
- Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Ma
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wanzhong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Gaoling Shi
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yan Yan
- Centre for Ecology Environment Monitoring and Scientific research, SongLiao River Basin Ecology and Environment Adiministration, Ministry of Ecology and Environment, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
He X, Lu Y, Cai T, Fu X, Song L, Wang M, Zeng Q, Zeng Q, Li M, Hua Y, Wu X, Wang L. Selective degradation of antibiotic in a novel Cu 7S 4/peroxydisulfate system via heterogeneous Cu(III) formation: Performance, mechanism and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131842. [PMID: 37329600 DOI: 10.1016/j.jhazmat.2023.131842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Efficient degradation of antibiotic by peroxydisulfate (PDS)-based advanced oxidation processes in complex water environment is challenging due to the interference of impurities and the low activation efficiency of PDS caused by its symmetric structure. Herein, a novel Cu7S4/PDS system was developed, which can selectively remove tetracycline hydrochloride (TC) without interference of inorganic ions (e.g., Cl- and HCO3-) and natural organic matter (e.g., humic acid). The results of quenching and probe experiments demonstrated that surface high-valent copper species (Cu(III)), rather than radicals and 1O2, are main active species for TC degradation. Cu(III) can be generated via Cu(I)/O2 and Cu(II)/Cu(I)/PDS systems and the S species on the surface of Cu7S4 promotes the cycle of Cu(II)/Cu(I) and Cu(III)/Cu(II), resulting in continuous generation of Cu(III). In addition, the degradation pathways of TC were proposed based on product analysis and DFT theory calculations. The acute toxicity, developmental toxicity and mutagenicity of treated TC were significantly reduced according to the results of toxicity estimation software tool. This study shows a promising Cu7S4/PDS system for the degradation and detoxication of antibiotic in complex water environment, while also providing a comprehensive understanding of PDS activation by Cu7S4 to generate active Cu(III) species.
Collapse
Affiliation(s)
- Xieping He
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Yining Lu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Tao Cai
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Xijun Fu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Lu Song
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Minjie Wang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Qingyi Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Qingming Zeng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Mi Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Yilong Hua
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
3
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|