1
|
Wu Y, Wang Y, Tong Z, Xie W, Wang A, Song C, Yao W, Wang J. Pyraclostrobin induces developmental toxicity and cardiotoxicity through oxidative stress and inflammation in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124490. [PMID: 38960114 DOI: 10.1016/j.envpol.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Pyraclostrobin, a typical representative of strobilurin fungicides, is extensively used in agriculture to control fungi and is often detected in water bodies and food. However, the comprehensive toxicological molecular mechanism of pyraclostrobin requires further study. To assess the toxic effects and underlying mechanisms of pyraclostrobin on aquatic organisms, zebrafish embryos were exposed to pyraclostrobin (20, 40, and 60 μg/L) until 96 h post fertilization (hpf). These results indicated that exposure to pyraclostrobin induces morphological alterations, including spinal curvature, shortened body length, and smaller eyes. Furthermore, heart developmental malformations, such as pericardial edema and bradycardia, were observed. This indicated severe cardiotoxicity induced by pyraclostrobin in zebrafish embryos, which was confirmed by the dysregulation of genes related to heart development. Besides, our findings also demonstrated that pyraclostrobin enhanced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), up-regulated catalase (CAT) activity, but inhibited superoxide dismutase (SOD) activity. Subsequently, the NF-κb signaling pathway was further studied, and the results indicated that the up-regulation of tnf-α, tlr-4, and myd88 activated the NF-κb signaling pathway and up-regulated the relative expression level of pro-inflammatory cytokines, such as cc-chemokine, ifn-γ, and cxcl-clc. Collectively, this study revealed that pyraclostrobin exposure induces developmental toxicity and cardiotoxicity, which may result from a combination of oxidative stress and inflammatory responses. These findings provide a basis for continued evaluation of the effects and ecological risks of pyraclostrobin on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weihong Xie
- Hangzhou Criminal Science and Technology Institute, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chian Song
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
2
|
Zhang Z, Li J, Wang Y, Tang C, Zhou Y, Li J, Lu X, Wang Y, Ma T, Xu H, Li X. Angiopep-2 conjugated biomimetic nano-delivery system loaded with resveratrol for the treatment of methamphetamine addiction. Int J Pharm 2024; 663:124552. [PMID: 39111355 DOI: 10.1016/j.ijpharm.2024.124552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Methamphetamine (METH) addiction can damage the central nervous system, resulting in cognitive impairment and memory deficits. Low target effects have limited the utility of anti-addiction drugs because the presence of the blood-brain barrier hinders the effective delivery of drugs to the brain. Angiopep-2 can recognize and target low-density lipoprotein receptor-associated protein 1 (LRP-1) on the surface of cerebral capillary endothelial cells, causing cross-cell phagocytosis, and thus has high blood-brain barrier transport capacity. Resveratrol (RSV) has been found to be a neuroprotective agent in many nervous system diseases. In our study, we modified Angiopep-2 on the surface of the erythrocyte membrane to obtain a modified erythrocyte membrane (Ang-RBCm) and coated RSV-loaded poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) nanoparticles with Ang-RBCm (Ang-RBCm@RSVNPs) to treat METH addiction. Our results showed that Ang-RBCm@RSVNPs can penetrate the blood-brain barrier and accumulate in the brain better than free RSV. Besides, mice treatetd with Ang-RBCm@RSVNPs showed less preference to METH-paired chamber and no noticeable tissue toxicity or abnormality was found in H&E staining images. Electrophysiological experiments demonstrated Ang-RBCm@RSVNPs could elevate synaptic plasticity impaired by METH. These indicated that Ang-RBCm@RSVNPs has better anti-addiction and neuroprotective effects. Therefore, Ang-RBCm@RSVNPs has great potential in the treatment of METH addiction.
Collapse
Affiliation(s)
- Ziting Zhang
- Department of Geriatircs, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yanling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaowei Lu
- Department of Geriatircs, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yijun Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China.
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Xiaolin Li
- Department of Geriatircs, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
3
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
4
|
Abdelrahman RE, Hassan MS, Ibrahim MA, Morgan AM. Mechanistic insights into acetamiprid-induced genotoxicity on the myocardium and potential ameliorative role of resveratrol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104526. [PMID: 39111560 DOI: 10.1016/j.etap.2024.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The current study aimed to explore the genotoxic impacts of the insecticide acetamiprid (ACP) on the myocardium and assess the ameliorative role of resveratrol (RSV). Male rats (10/group) were treated via oral route for 90 days: control; ACP (25 mg/kg); RSV (20 mg/kg); ACP+RSV. Peripheral blood micronucleus test, oxidative stress analysis, comet assay, 8-hydroxydeoxyguanosine and gene expression assessment were performed. The findings revealed that ACP has myocardial genotoxic effects, as demonstrated by increased micronucleus and 8-hydroxydeoxyguanosine formation and increased all comet parameters. Oxidative stress analysis demonstrated that ACP elevated H2O2 and NO levels while decreasing catalase and GST activities. Acetamiprid dysregulated the expression of genes related to oxidative stress and DNA damage response. However, RSV co-treatment resulted in significant protection against these genotoxic impacts. Resveratrol reduced DNA damage and restored the oxidative balance in the myocardium. Moreover, RSV modulated the Nrf2/HO-1 and Atm/P53 pathways, potentiating antioxidant defense and DNA repair.
Collapse
Affiliation(s)
- Rehab E Abdelrahman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed S Hassan
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ashraf M Morgan
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Serim I, Demirel HH, Zemheri-Navruz F, Ince S. Taurine exhibits antioxidant, anti-inflammatory, and antiapoptotic effects against pyraclostrobin exposure in rats. Toxicol Res (Camb) 2024; 13:tfae120. [PMID: 39100859 PMCID: PMC11295209 DOI: 10.1093/toxres/tfae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Pyraclostrobin, a strobilurin-derived fungicide, causes oxidative stress and DNA damage in the organism. Taurine plays an important role in metabolic processes such as osmoregulatory, cytoprotective, and antioxidant effects. The study aimed to investigate the protective effect of taurine in Sprague Dawley male rats exposed to pyraclostrobin. The rats were separated into 6 groups and were found 8 animals in each group. Rats were given 30 mg/kg pyraclostrobin and pyraclostrobin together with three different taurine concentrations (50, 100, and 200 mg/kg) via oral gavage for 28 days. While pyraclostrobin increased biochemical parameters, lipid peroxidation, and DNA damage, it decreased glutathione levels and enzyme activities of catalase and superoxide dismutase. Pyraclostrobin increased apoptotic, proinflammatory, and CYP2E1 mRNA expression levels, whereas antiapoptotic gene Bcl-2 mRNA expression levels decreased in liver tissue. Additionally, pyraclostrobin caused histopathological alterations in tissues. Taurine in a dose-dependent manner reversed the changes caused by pyraclostrobin. As a result, taurine exhibited a cytoprotective effect by showing antioxidant, anti-inflammatory, and antiapoptotic activities against oxidative damage caused by pyraclostrobin.
Collapse
Affiliation(s)
- Ibrahim Serim
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Fahriye Zemheri-Navruz
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74100, Bartın, Turkey
| | - Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
6
|
Wang Z, Nie K, Liang Y, Niu J, Yu X, Zhang O, Liu L, Shi X, Wang Y, Feng X, Zhu Y, Wang P, Cheng G. A mosquito salivary protein-driven influx of myeloid cells facilitates flavivirus transmission. EMBO J 2024; 43:1690-1721. [PMID: 38378891 PMCID: PMC11066113 DOI: 10.1038/s44318-024-00056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.
Collapse
Affiliation(s)
- Zhaoyang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Kaixiao Nie
- Department of Pathogen Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yan Liang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Oujia Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100086, China
| | - Long Liu
- Institute of Virology, Hubei University of Medicine, Shiyan, 442000, China
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Xuechun Feng
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China.
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
- Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
7
|
Leite FG, Sampaio CF, Cardoso Pires JA, de Oliveira DP, Dorta DJ. Toxicological impact of strobilurin fungicides on human and environmental health: a literature review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:142-151. [PMID: 38343082 DOI: 10.1080/03601234.2024.2312786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Fungicides are specifically used for controlling fungal infections. Strobilurins, a class of fungicides originating from the mushroom Strobilurus tenacellus, act on the fungal mitochondrial respiratory chain, interrupting the ATP cycle and causing oxidative stress. Although strobilurins are little soluble in water, they have been detected in water samples (such as rainwater and drinking water), indoor dust, and sediments, and they can bioaccumulate in aquatic organisms. Strobilurins are usually absorbed orally and are mainly eliminated via the bile/fecal route and urine, but information about their metabolites is lacking. Strobilurins have low mammalian toxicity; however, they exert severe toxic effects on aquatic organisms. Mitochondrial dysfunction and oxidative stress are the main mechanisms related to the genotoxic damage elicited by toxic compounds, such as strobilurins. These mechanisms alter genes and cause other dysfunctions, including hormonal, cardiac, neurological, and immunological impairment. Despite limitations, we have been able to compile literature information about strobilurins. Many studies have dealt with their toxic effects, but further investigations are needed to clarify their cellular and underlying mechanisms, which will help to find ways to minimize the harmful effects of these compounds.
Collapse
Affiliation(s)
- Fernanda Gomes Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Carolina Ferreira Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | | | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‑DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, São Paulo, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT‑DATREM), Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
8
|
Wu M, Bian J, Han S, Zhang C, Xu W, Tao L, Li Z, Zhang Y. Characterization of hepatotoxic effects induced by pyraclostrobin in human HepG2 cells and zebrafish larvae. CHEMOSPHERE 2023; 340:139732. [PMID: 37549743 DOI: 10.1016/j.chemosphere.2023.139732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Pyraclostrobin is a highly effective and broad-spectrum strobilurin fungicide. With the widespread use of pyraclostrobin to prevent and control crop diseases, its environmental pressure and potential safety risks to humans have attracted much attention. Herein, the toxicological risks of pyraclostrobin toward HepG2 cells and the mechanisms of intoxication in vitro were investigated. The liver toxicity of pyraclostrobin in zebrafish larvae was also evaluated. It was found that pyraclostrobin induced DNA damage and reactive oxygen species generation in HepG2 cells, indicating the potential genotoxicity of pyraclostrobin. The results of fluorescent staining experiments and the expression of cytochrome c, Bcl-2 and Bax demonstrated that pyraclostrobin induced mitochondrial dysfunction, resulting in cell apoptosis. Monodansylcadaverine staining and autophagy marker-related proteins LC3, p62, Beclin-1 protein expression showed that pyraclostrobin promoted cell autophagy. Furthermore, immunoblotting analysis suggested that pyraclostrobin induced autophagy accompanied with activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mTOR signaling pathway. Visualization of zebrafish liver and oil red staining indicated that pyraclostrobin could induce liver degeneration and liver steatosis in zebrafish. Collectively, these results help to better understand the hepatotoxicity of pyraclostrobin and provide a scientific basis for its safe applications and risk control.
Collapse
Affiliation(s)
- Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jinhao Bian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Shuang Han
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States.
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
9
|
Ye M, Yang M, Dai W, Li H, Zhou X, Chen Y, He L. Targeting Renal Proximal Tubule Cells in Obesity-Related Glomerulopathy. Pharmaceuticals (Basel) 2023; 16:1256. [PMID: 37765062 PMCID: PMC10535317 DOI: 10.3390/ph16091256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
As a metabolic disorder, obesity can cause secondary kidney damage, which is called obesity-related glomerulopathy (ORG). As the incidence of obesity increases worldwide, so does the incidence of end-stage renal disease (ESRD) caused by ORGs. However, there is still a lack of effective strategies to prevent and delay the occurrence and development of ORG. Therefore, a deeper understanding and elaboration of the pathogenesis of ORG is conducive to the development of therapeutic drugs for ORG. Here, we review the characteristics of pathological lesions of ORG and describe the roles of lipid metabolism disorders and mitochondrial oxidative stress in the development of ORG. Finally, we summarize the current available drugs or compounds for the treatment of ORG and suggested that ameliorating renal lipid metabolism and mitochondrial function may be potential therapeutic targets for ORG.
Collapse
Affiliation(s)
- Muyao Ye
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Hao Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Xun Zhou
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| | - Yinyin Chen
- Department of Nephrology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410081, China
- Changsha Clinical Research, Changsha 410011, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha 410011, China; (M.Y.); (M.Y.)
| |
Collapse
|
10
|
Gao Y, Zhang D, Wang P, Qu X, Xu J, Yu Y, Zhou X. Acrylamide-induced meiotic arrest of spermatocytes in adolescent mice by triggering excessive DNA strand breaks: Potential therapeutic effects of resveratrol. Hum Exp Toxicol 2023; 42:9603271231188293. [PMID: 37550604 DOI: 10.1177/09603271231188293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Baked carbohydrate-rich foods are the main source of acrylamide (AA) in the general population and are widely consumed by teenagers. Considering the crucial development of the reproductive system during puberty, the health risks posed by AA in adolescent males have raised public concern.Methods: In this study, we exposed 3-week-old male pubertal mice to AA for 4 weeks to evaluate its effect on spermatogenesis using computer-assisted sperm analysis (CASA) and historical analysis. Flow cytometric analysis and meiocyte spreading assay were conducted to assess meiosis in mice. The expression of meiosis-related proteins and double-strand break (DSB) proteins were evaluated by immunoblot analyses. Additionally, isolated spermatocytes were used to explore the role of resveratrol in AA-induced damages of meiosis.Results: Our results showed that AA decreased the testicular and epididymal indexes, reduced sperm count and motility, and induced morphological disruption of the testes in pubertal mice. Subsequent meiotic analysis revealed that AA increased the proportion of 4C spermatocytes and decreased the proportion of 1C spermatids. The expression levels of meiosis-related proteins (SYCP3, Cyclin A1 and CDK2) were downregulated, and signaling proteins (γH2AX, p-CHK2 and p-ATM) expression levels were upregulated in AA-treated mice testes. Similar expression patterns were observed in primary spermatocytes treated with AA and these effects were reversed significantly by resveratrol.Conclusions: Our results indicate that AA induces meiotic arrest via persistent activation of DSBs, which may contribute to AA-compromised spermatogenesis. Resveratrol could serve as a potential therapeutic agent against AA-induced meiotic toxicity. These data highlight the importance of natural product supplementation for treating AA-related reproductive toxicity.
Collapse
Affiliation(s)
- Y Gao
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - D Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - P Wang
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - X Qu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - J Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Y Yu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - X Zhou
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|