Zhang S, Hu C, Cheng J. A Comprehensive Evaluation System for the Stabilization Effect of Heavy Metal-Contaminated Soil Based on Analytic Hierarchy Process.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;
19:15296. [PMID:
36430016 PMCID:
PMC9690790 DOI:
10.3390/ijerph192215296]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Stabilization technology is widely used in the remediation of heavy metal-contaminated farmland soil. However, the evaluation method for the remediation effect is not satisfactory. To scientifically evaluate the remediation effect, this study constructed a comprehensive evaluation system by bibliometric analysis and an analytic hierarchy process (AHP). Ultimately, 16 indicators were selected from three aspects of the soil, crops, and amendment. The 16 indicators are divided into three groups, namely indicators I that can be evaluated according to the national standards of China, indicators II that can be evaluated according to the classification management of farmland and Indicators III that are the dynamic change indicators without an evaluation criterion. Comprehensive scores for 16 indicators were calculated using three response models, respectively. According to the difference between the scores before and after the remediation, the remediation effect is divided into five levels, which are excellent, good, qualified, poor, and very poor. This study provides a theoretical basis and insightful information for a farmland pollution remediation and a sustainable utilization.
Collapse