1
|
Bannunah AM. Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules 2023; 28:5428. [PMID: 37513299 PMCID: PMC10383095 DOI: 10.3390/molecules28145428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
ZrO2 nanoparticles have received substantially increased attention in every field of life owing to their wide range of applications. Zirconium oxide is a commercially economical, non-hazardous, and sustainable metal oxide having diversified potential applications. ZrO2 NPs play a vast role in the domain of medicine and pharmacy such as anticancer, antibacterial, and antioxidant agents and tissue engineering owing to their reliable curative biomedical applications. In this review article, we address all of the medical and biomedical applications of ZrO2 NPs prepared through various approaches in a critical way. ZrO2 is a bio-ceramic substance that has received increased attention in biomimetic scaffolds owing to its high mechanical strength, excellent biocompatibility, and high chemical stability. ZrO2 NPs have demonstrated potential anticancer activity against various cancer cells. ZrO2-based nanomaterials have exhibited potential antibacterial activity against various bacterial strains and have also demonstrated excellent antioxidant activity. The ZrO2 nanocomposite also exhibits highly sensitive biosensing activity toward the sensing of glucose and other biological species.
Collapse
Affiliation(s)
- Azzah M Bannunah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
2
|
Su H, Zhao Q, Jiang C, Wang Y, Niu Y, Li X, Lou W, Qi Y, Wang X. Preparation of highly dispersed SnO/TiO 2 catalysts and their performances in catalyzing polyol ester. RSC Adv 2023; 13:8934-8941. [PMID: 36936835 PMCID: PMC10021077 DOI: 10.1039/d2ra07334j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
A series of stannous oxide supported on rutile titanium dioxide (SnO/TiO2) were prepared by a conventional incipient wetness impregnation method, and their performance as catalysts for fatty acid esterification reactions was investigated. The effects of Sn precursors (SnCl2·2H2O or SnC2O4), loading amounts (5-15%), and treating ambiences (air and N2) were explored. The optimized 10% SnO/TiO2-Cl with SnCl2·2H2O as the Sn precursor and thermal treatment in N2 showed the best esterification performance. Specifically, 10% SnO/TiO2-Cl catalyzed the esterification process of trimethylolpropane and n-octanoic acid with a conversion of 99.6% over 5 h at 160 °C, and 10% SnO/TiO2-Cl was efficient for six catalytic cycles. Based on the results of X-ray diffraction (XRD), Raman spectra, high-resolution transmission electron microscopy (HRTEM), infrared spectra of pyridine adsorption (Py-IR), and ammonia temperature programmed desorption (NH3-TPD), the improved catalytic performance is supposed to be attributable to the high dispersion of the Sn species on 10% SnO/TiO2-Cl as the moderate Lewis acid sites.
Collapse
Affiliation(s)
- Huaigang Su
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qin Zhao
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
| | - Cheng Jiang
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
- Qingdao Key Laboratory of Lubrication Technology for Advanced Equipment, Qingdao Center of Resource Chemistry and New Materials Qingdao 266100 Shandong China
| | - Yanan Wang
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
| | - Yongfang Niu
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuelian Li
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenjing Lou
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
- Qingdao Key Laboratory of Lubrication Technology for Advanced Equipment, Qingdao Center of Resource Chemistry and New Materials Qingdao 266100 Shandong China
| | - Yanxing Qi
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
| | - Xiaobo Wang
- State Key Laboratory of Solid Lubrication, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS Lanzhou 730000 China
- Qingdao Key Laboratory of Lubrication Technology for Advanced Equipment, Qingdao Center of Resource Chemistry and New Materials Qingdao 266100 Shandong China
| |
Collapse
|