1
|
Baima Ferreira Freitas I, Duarte-Neto PJ, Sorigotto LR, Cardoso Yoshii MP, de Palma Lopes LF, de Almeida Pereira MM, Girotto L, Badolato Athayde D, Veloso Goulart B, Montagner CC, Schiesari LC, Martinelli LA, Gaeta Espíndola EL. Effects of pasture intensification and sugarcane cultivation on non-target species: A realistic evaluation in pesticide-contaminated mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171425. [PMID: 38432384 DOI: 10.1016/j.scitotenv.2024.171425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Conventional soil management in agricultural areas may expose non-target organisms living nearby to several types of contaminants. In this study, the effects of soil management in extensive pasture (EP), intensive pasture (IP), and sugarcane crops (C) were evaluated in a realistic-field-scale study. Thirteen aquatic mesocosms embedded in EP, IP, and C treatments were monitored over 392 days. The recommended management for each of the areas was simulated, such as tillage, fertilizer, pesticides (i.e. 2,4-D, fipronil) and vinasse application, and cattle pasture. To access the potential toxic effects that the different steps of soil management in these areas may cause, the cladoceran Ceriophania silvestrii was used as aquatic bioindicator, the dicot Eruca sativa as phytotoxicity bioindicator in water, and the dipteran Chironomus sancticaroli as sediment bioindicator. Generalized linear mixed models were used to identify differences between the treatments. Low concentrations of 2,4-D (<97 μg L-1) and fipronil (<0.21 μg L-1) in water were able to alter fecundity, female survival, and the intrinsic rate of population increase of C. silvestrii in IP and C treatments. Similarly, the dicot E. sativa had germination, shoot and root growth affected mainly by 2,4-D concentrations in the water. For C. sancticarolli, larval development was affected by the presence of fipronil (<402.6 ng g-1). The acidic pH (below 5) reduced the fecundity and female survival of C. silvestrii and affected the germination and growth of E. sativa. Fecundity and female survival of C. silvestrii decrease in the presence of phosphorus-containing elements. The outcomes of this study may improve our understanding of the consequences of exposure of freshwater biota to complex stressors in an environment that is rapidly and constantly changing.
Collapse
Affiliation(s)
- Isabele Baima Ferreira Freitas
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil.
| | - Paulo José Duarte-Neto
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, 52171900 Recife, PE, Brazil
| | - Lais Roberta Sorigotto
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Laís Fernanda de Palma Lopes
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Mickaelle Maria de Almeida Pereira
- PPGBEA, Department of Statistics and Informatics, Rural Federal University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, 52171900 Recife, PE, Brazil
| | - Laís Girotto
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Danillo Badolato Athayde
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| | - Bianca Veloso Goulart
- LQA, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Rua Josué de Castro, s/n, 13083-970 Campinas, SP, Brazil
| | - Cassiana Carolina Montagner
- LQA, Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Rua Josué de Castro, s/n, 13083-970 Campinas, SP, Brazil
| | - Luis Cesar Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, 03828-000 São Paulo, SP, Brazil
| | - Luiz Antônio Martinelli
- CENA, USP - Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000 São Paulo, SP, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/SHS, Center of Ecotoxicology and Applied Ecology, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
2
|
Veloso Goulart B, De Caroli Vizioli B, Junio da Silva Pinto T, Silberschmidt Freitas J, Moreira RA, da Silva LCM, Yoshii MPC, Lopes LFDP, Pretti Ogura A, Henry TB, Gaeta Espindola EL, Montagner CC. Fate and toxicity of 2,4-D and fipronil in mesocosm systems. CHEMOSPHERE 2024; 346:140569. [PMID: 37918533 DOI: 10.1016/j.chemosphere.2023.140569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
2,4-D and fipronil are among Brazil's most used pesticides. The presence of these substances in surface waters is a concern for the aquatic ecosystem health. Thus, understanding the behavior of these substances under environmentally relevant conditions is essential for an effective risk assessment. This study aimed to determine the degradation profiles of 2,4-D and fipronil after controlled application in aquatic mesocosm systems under influencing factors such as environmental aspects and vinasse application, evaluate pesticide dissipation at the water-sediment interface, and perform an environmental risk assessment in water and sediment compartments. Mesocosm systems were divided into six different treatments, namely: control (C), vinasse application (V), 2,4-D application (D), fipronil application (F), mixture of 2,4-D and fipronil application (M), and mixture of 2,4-D and fipronil with vinasse application (MV). Pesticide application was performed according to typical Brazilian sugarcane management procedures, and the experimental systems were monitored for 150 days. Pesticide dissipation kinetics was modeled using first-order reaction models. The estimated half-life times of 2,4-D were 18.2 days for individual application, 50.2 days for combined application, and 9.6 days for combined application with vinasse. For fipronil, the respective half-life times were 11.7, 13.8, and 24.5 days. The dynamics of pesticides in surface waters resulted in the deposition of these compounds in the sediment. Also, fipronil transformation products fipronil-sulfide and fipronil-sulfone were quantified in water 21 days after pesticide application. Finally, performed risk assessments showed significant potential risk to environmental health, with RQ values for 2,4-D up to 1359 in freshwater and 98 in sediment, and RQ values for fipronil up to 22,078 in freshwater and 2582 in sediment.
Collapse
Affiliation(s)
- Bianca Veloso Goulart
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Campinas, SP, 13083-970, Brazil
| | - Beatriz De Caroli Vizioli
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Campinas, SP, 13083-970, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Juliane Silberschmidt Freitas
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | | | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Theodore Burdick Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure, and Society, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Cassiana Carolina Montagner
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|