1
|
Yang S, Chen Q, Wang L. Association of Zinc Intake, Tobacco Smoke Exposure, With Metabolic Syndrome: Evidence from NHANES 2007-2018. Biol Trace Elem Res 2024; 202:5429-5437. [PMID: 38411892 DOI: 10.1007/s12011-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The objective was to explore the effect modification of zinc (Zn) intake levels on the relationship of tobacco smoke exposure and risk of metabolic syndrome (MetS) in children and adolescents. We used data from 2007-2018 National Health and Nutrition Examination Survey (N = 3701). MetS was considered as main endpoint. Weighted multivariable logistic regression models showed that high cotinine level (≥ 0.05 ng/mL) was associated with increased odds of MetS [odds ratio = 1.54, 95% confidence interval: 1.01, 2.36], and the association between Zn intake levels and MetS did not demonstrate statistical significance. Importantly, the multiplicative interaction term between low Zn intake (≤ 4.89 mg/1000 kcal) and high cotinine level was related to higher odds of MetS (p-value for interaction 0.018). For the group with low Zn intake, high cotinine level was associated with increased odds of MetS. However, there was no significant relationship between cotinine levels and MetS risk in the group with high Zn intake. The effect modification by Zn intake on the relationship of tobacco smoke exposure and risk of MetS is significant in individuals who had a sedentary time of ≥ 6 h, identified as non-Hispanic White, or resided in households with smokers. In short, low Zn intake may potentiate the association of tobacco smoke exposure and MetS risk in children and adolescents.
Collapse
Affiliation(s)
- Shengxiang Yang
- Department of Pharmacy, Maternal and Child Health and Family Planning Service Center of Xuzhou District Yibin City, No. 158 Changjiang Road, Syzhou District, Yibin, 644600, Sichuan Province, People's Republic of China.
| | - Qian Chen
- Department of Pharmacy, The First People's Hospital of Yibin City, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Lin Wang
- Department of Pediatrics, Maternal and Child Health and Family Planning Service Center of Xuzhou District Yibin City, Yibin, 644600, Sichuan Province, People's Republic of China
| |
Collapse
|
2
|
Koh HB, Chung JH, Moon SJ. Association of volatile organic compound exposure and metabolic syndrome. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104581. [PMID: 39461391 DOI: 10.1016/j.etap.2024.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
The cumulative toxicity of volatile organic compounds (VOCs) cause many medical diseases. We analyzed the evidence of association between VOCs and risk of metabolic syndrome in the Korean population using 1771 participants from the 2023 National Health and Nutrition Examination Survey. The creatinine-corrected urinary concentrations of BMA, 2-MHA, PGA, SPMA, 3-HPMA, BPMA and DHBMA were higher in the metabolic syndrome group than in the non-metabolic syndrome group. Urine N-Acetyl-S-(phenyl)-L-cysteine (SPMA) levels were significantly associated with metabolic syndrome after adjusting for confounders (odds ratio: 1.71). 2-MHA (OR 1.29, P=0.035) and SPMA (OR 2.84, P<0.001) were associated with the risk of elevated FBG impairment and SPMA (OR 1.57) was positively connected with the high blood pressure (P=0.016). In conclusion, the findings indicated significant association between the metabolic syndrome and a number of VOCs. Among them, there was a substantial positive correlation between the urinary SPMA levels and metabolic syndrome.
Collapse
Affiliation(s)
- Hee Byung Koh
- Department of internal Medicine, International St. Mary`s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Jae Ho Chung
- Department of internal Medicine, International St. Mary`s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Sung Jin Moon
- Department of internal Medicine, International St. Mary`s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
3
|
Pang Y, Wang Y, Hao H, Zhu W, Zou M, Liu Q, Wang M, Han B, Bao L, Niu Y, Dai Y, Jing T, Zhang R. Associations of multiple serum metals with the risk of metabolic syndrome among the older population in China based on a community study: A mediation role of peripheral blood cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116981. [PMID: 39232297 DOI: 10.1016/j.ecoenv.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Metal exposure has been reported to be associated with metabolic syndrome (MetS), however, the evidence remains inconclusive, particularly in elderly individuals. From May to July 2016, serum levels of 16 metals were measured using inductively coupled plasma mass spectrometry (ICP-MS) in 852 elderly individuals (≥65 years) residing in Wuhan, China. Biological detection and disease recognition were based on individual surveys conducted during health check-ups. Spearman's rank correlation analysis was performed to identify the correlation among serum metals. The data were Ln-transformed to fit a normal distribution for further analyses. Linear and logistic regression were applied to explore the associations between metals and diseases. Restricted cubic spline (RCS) analysis was utilized to examine dose-response relationships. The Weighted Quantile Sum (WQS) score was applied to determine the empirical weights of each heavy metal in the context of their combined effect on metabolic diseases. The prevalence of MetS, hypertension, diabetes, and hyperlipidemia were 46.36 %, 68.90 %, 24.65 %, and 21.60 %, respectively. Serum metal mixture was positively associated with the prevalence of MetS (OR = 1.92, 95 % CI: 1.30-2.82), hypertension (OR = 1.50, 95 % CI: 1.01-2.23), and diabetes (OR = 2.18, 95 % CI: 1.48-3.22). In single metal models, we found that serum zinc levels were associated with an increased risk of MetS, while rubidium had a protective effect against MetS. Interestingly, different metals had distinct effects on specific diseases in this study: lithium and barium were more likely to influence blood pressure, while selenium had a more significant effect on blood glucose. Lipids were more susceptible to the effects of zinc, selenium, and strontium. Platelet count (PLT) and lymphocyte count (LYM) mediated the association between selenium exposure and hyperlipidemia, while neutrophil count (NEU) mediated the relationship between serum rubidium exposure and MetS. Our findings offer valuable etiological insights into the relationship between serum heavy metals and the prevalence of MetS, suggesting that peripheral blood cells may play a mediating role in this association.
Collapse
Affiliation(s)
- Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yan Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Haiyan Hao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Institute of Environmental Health Monitoring and Evaluation, Hebei Province Center for Disease Control and Prevention, Shijiazhuang 050021, PR China
| | - Wenyuan Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Zou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Bin Han
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lei Bao
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, PR China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
4
|
Li C, Lin K, Xiao L, Dilixiati Y, Huo Y, Zhang Z. Evaluation of cadmium effects on the glucose metabolism on insulin resistance HepG2 cells. Heliyon 2024; 10:e37325. [PMID: 39296152 PMCID: PMC11408151 DOI: 10.1016/j.heliyon.2024.e37325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cadmium (Cd) is an environmental endocrine disruptor. Despite increasing research about the metabolic effects of Cd on HepG2 cells, information about the metabolic effects of Cd on insulin resistance HepG2 (IR-HepG2) cells is limited. Currently, most individuals with diabetes are exposed to Cd due to pollution. Previously, we reported that Cd exposure resulted in decreased blood glucose levels in diabetic mice, the underlying mechanism deserves further study. Therefore, we used palmitic acid (0.25 mM) to treat HepG2 cells to establish IR-HepG2 model. IR-HepG2 cells were exposed to CdCl2 (1 μM and 2 μM). Commercial kits were used to measure glucose production, glucose consumption, ROS and mitochondrial membrane potential. Western blot and qRT-PCR were used to measure the proteins and genes of glucose metabolism. In the current study setting, we found no significant changes in glucose metabolism in Cd-exposed HepG2 cells, but Cd enhanced glucose uptake, inhibited gluconeogenesis and activated the insulin signaling pathway in IR-HepG2 cells. Meanwhile, we observed that Cd caused oxidative stress and increased the intracellular calcium concentration and inhibited mitochondrial membrane potential in IR-HepG2 cells. Cd compensatingly increased glycolysis in IR-HepG2 cells. Collectively, we found Cd ameliorated glucose metabolism disorders in IR-HepG2 cells. Furthermore, Cd exacerbated mitochondrial damage and compensatory increased glycolysis in IR-HepG2 cells. These findings will provide novel insights for Cd exposure in insulin resistant individuals.
Collapse
Affiliation(s)
- Changhao Li
- School of Public Health, Soochow University, Suzhou, 215123, China
| | - Ke Lin
- Center for Disease Control and Prevention of Xishan District, Wuxi, 214000, Jiangsu, China
| | - Liang Xiao
- School of Public Health, Soochow University, Suzhou, 215123, China
| | | | - Yuan Huo
- School of Public Health, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Du G, Song X, Zhou F, Ouyang L, Li Q, Ruan S, Su R, Rao S, Zhu Y, Xie J, Feng C, Fan G. Association Between Multiple Metal(loid)s Exposure and Blood Lipid Levels: Evidence from a Cross-Sectional Study of Southeastern China. Biol Trace Elem Res 2024; 202:3483-3495. [PMID: 37991670 DOI: 10.1007/s12011-023-03951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Exposure to essential and toxic metals occurs simultaneously as a mixture in real-life. However, there is no consensus regarding the effects of co-exposure to multiple metal(loid)s (designated hereafter metals) on blood lipid levels. Thus, blood concentrations of six human essential metals and five toxic metals in 720 general populations from southeastern China were simultaneously determined as a measure of exposure. In addition, quantile g-computation, Bayesian kernel machine regression, elastic net regression, and generalized linear model were used to investigate both the joint and individual effects of exposure to this metal mixture on human blood lipid levels. The significant positive joint effect of exposure to this metal mixture on serum total cholesterol (TC) levels, rather than on serum triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, Castelli risk index I, Castelli risk index II, atherogenic coefficient, and non-HDL-C levels, was found. In addition, the positive effect may be primarily driven by selenium (Se), lead (Pb), and mercury (Hg) exposure. In addition, on the effect of TC levels, the synergistic effect between Pb and Hg and the antagonistic effect between Se and Pb were identified. Our finding suggests that combined exposure to this metal mixture may affect human blood lipid levels. Therefore, reducing exposure to heavy metals, such as Pb and Hg, should be a priority for the general population. In addition, Se supplementation should also be considered with caution.
Collapse
Affiliation(s)
- Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiaoguang Song
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Institute of Environmental Health, Jiangxi Province Center for Disease Control and Prevention, Nanchang, 330046, People's Republic of China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shiying Ruan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
6
|
Cheng Z, Kong Y, Yang W, Xu H, Tang D, Zuo Y. Association between serum copper and blood glucose: a mediation analysis of inflammation indicators in the NHANES (2011-2016). Front Public Health 2024; 12:1401347. [PMID: 38855446 PMCID: PMC11157037 DOI: 10.3389/fpubh.2024.1401347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Background The rising prevalence of diabetes underscores the need for identifying effective prevention strategies. Recent research suggests environmental factors, particularly heavy metals like copper, significantly influence health outcomes, including diabetes, through mechanisms involving inflammation and oxidative stress. This study aims to explore how serum copper levels affect blood glucose, employing NHANES data from 2011 to 2016, to provide insights into environmental health's role in diabetes prevention and management. Methods The study analyzed data from 2,318 NHANES participants across three cycles (2011-2016), focusing on those with available data on serum copper, inflammatory markers, and blood glucose levels. We utilized principal component analysis for selecting inflammatory markers, mediation analysis to examine direct and indirect effects, multiple linear regression for assessing relationships between markers and glucose levels, and weighted quantile sum regression for evaluating individual and collective marker effects, adjusting for demographic variables and serum copper. Results Participants averaged 42.70 years of age, with a near-even split between genders. Average serum copper was 119.50 μg/dL, white blood cell count 6.82 × 109/L, and fasting blood glucose 107.10 mg/dL. Analyses identified significant mediation by inflammatory markers (especially white blood cells: 39.78%) in the copper-blood glucose relationship. Regression analyses highlighted a positive correlation between white blood cells (estimate: 1.077, 95% CI: 0.432 to 2.490, p = 0.013) and copper levels and a negative correlation for monocyte percentage (estimate: -1.573, 95% CI: 0.520 to -3.025, p = 0.003). Neutrophil percentage was notably influential in glucose levels. Sensitive analyses confirmed the study's findings. Conclusion Serum copper levels significantly impact blood glucose through inflammatory marker mediation, highlighting the importance of considering environmental factors in diabetes management and prevention. These findings advocate for public health interventions and policies targeting environmental monitoring and heavy metal exposure reduction, emphasizing the potential of environmental health measures in combating diabetes incidence.
Collapse
Affiliation(s)
- Zijing Cheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haitao Xu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Decheng Tang
- Department of Management Science, School of Management, Fudan University, Shanghai, China
| | - Yu Zuo
- Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Hu M, Xu J, Shi L, Shi L, Yang H, Wang Y. The p38 MAPK/snail signaling axis participates in cadmium-induced lung cancer cell migration and invasiveness. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24042-24050. [PMID: 38436850 DOI: 10.1007/s11356-024-32746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
To determine that p38 MAPK activation contributes to the migration and invasion of lung cancer cells caused by cadmium (Cd). A549 lung cancer cell migration and invasion were assessed using a transwell plate system, and the role of p38 was determined by knocking down p38 activity with two different inhibitors of p38. The activity of p38 was measured by western blot analysis using phospho-specific p38 antibodies and normalized to blots using antibodies directed to total p38 proteins. Snail transcripts were measured using qRT-PCR. The inhibition of p38 blocked Cd-induced migration and invasion, which correlated with an increased activation of p38 as a function of dose and time. Furthermore, Cd-induced activation of p38 MAPK controlled the increase of snail mRNA expression. The p38 MAPK/snail signaling axis was involved in Cd-induced lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Mengke Hu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Xu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Liqin Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Shi
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, No. 105 of South Nongye Road, Zhengzhou, 450016, China.
| |
Collapse
|
8
|
Dong R, Chang D, Shen C, Shen Y, Shen Z, Tian T, Wang J. Association of volatile organic compound exposure with metabolic syndrome and its components: a nationwide cross-sectional study. BMC Public Health 2024; 24:671. [PMID: 38431552 PMCID: PMC10909266 DOI: 10.1186/s12889-024-18198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a health issue consisting of multiple metabolic abnormalities. The impact of exposure to volatile organic compounds (VOCs) on MetS and its components remains uncertain. This study aimed to assess the associations of individual urinary metabolites of VOC (mVOCs) and mVOC mixtures with MetS and its components among the general adult population in the United States. METHODS A total of 5345 participants with eligible data were filtered from the 2011-2020 cycles of the National Health and Nutrition Examination Survey. Multivariate logistic regression models were applied to assess the associations of individual mVOCs with MetS and its components. The least absolute shrinkage and selection operator (LASSO) regression models were constructed to identify more relevant mVOCs. The weight quantile sum regression model was applied to further explore the links between mVOC co-exposure and MetS and its components. RESULTS The results indicated positive associations between multiple mVOCs and MetS, including CEMA, DHBMA, and HMPMA. CEMA was found to be positively correlated with all components of MetS. HMPMA was associated with elevated triglyceride (TG), reduced high-density lipoprotein, and fasting blood glucose (FBG) impairment; 3HPMA was associated with an elevated risk of high TG and FBG impairment; and DHBMA had positive associations with elevated TG and high blood pressure. The co-exposure of LASSO-selected mVOCs was associated with an increased risk of elevated TG, high blood pressure, and FBG impairment. CONCLUSION Positive associations of certain individual urinary mVOCs and mVOC mixtures with MetS and its components were observed by utilizing multiple statistical models and large-scale national data. These findings may serve as the theoretical basis for future experimental and mechanistic studies and have important implications for public health.
Collapse
Affiliation(s)
- Rui Dong
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Dongchun Chang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chao Shen
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Ya Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Zhengkai Shen
- Department of Integrated Service and Management, Jiangsu Province Center for Disease Control and Prevention, Nanjing, China
| | - Ting Tian
- Jiangsu Provincial Center for Disease Control and Prevention, Institute of Nutrition and Food Safety, Nanjing, China.
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|