1
|
Yu Z, Sun Z, Liu L, Li C, Zhang X, Amat G, Ran M, Hu X, Xu Y, Zhao X, Zhou J. Environmental surveillance in Jinan city of East China (2014-2022) reveals improved air quality but remained health risks attributable to PM2.5-bound metal contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123275. [PMID: 38163628 DOI: 10.1016/j.envpol.2023.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
PM2.5-bound metal contaminants are associated with multiple chronic diseases in human. At global level, the contamination status has not been well controlled yet. Here we report findings from a long-term air pollution surveillance in Jinan city of Shandong, China. During 2014-2022, the dynamics and trends of PM2.5-bound heavy metal contaminants were monitored in an industrial area and a downtown area. The surveillance targets included: antimony (Sb), aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se). The human exposure and health risks were calculated and we found that the health risks of most contaminants showed peak values in autumn and winter. But Al, Mn, Hg and Be were found to result in highest health risk in spring or summer in the downtown area. In the industrial area we identified 100% alarming health index >1 (ranged from 1.12 to 3.35) in autumn and winter. In winter the total non-carcinogenic HI was all above 1 (peak value 2.21). Mn and As together posed >85% non-carcinogenic risk. As and Cd were ranked as major drivers of carcinogenic risks (5.84 × 10-6 and 2.78 × 10-6). Pd and Cd both showed non-negligible environmental levels but risk assessment model for their air-exposure associated non-carcinogenic risks are not yet available. This study updates air pollution data and status for air pollution status in China. This study provides valuable 9 year long-term reference to experimental and field studies in the related fields.
Collapse
Affiliation(s)
- Zhigang Yu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Zhan Sun
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Lanzheng Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China.
| | - Xin Zhang
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Gzalnur Amat
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Mohan Ran
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Xiaoyue Hu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Yunxiang Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
2
|
Vukelić D, Baralić K, Marić Đ, Đukic-Ćosić D, Bulat Z, Panieri E, Saso L, Djordjevic AB. Hepato-renal toxicity of low dose metal(oid)s mixture in real-life risk simulation in rats: Effects on Nrf2/HO-1 signalling and redox status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168352. [PMID: 37952665 DOI: 10.1016/j.scitotenv.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
The understanding that humans are exposed to a low level of toxic metals and metalloids in their lifetime has resulted in a shift in scientific and regulatory perspectives from the traditional evaluation of single metal toxicity to complex mixtures, relevant to real-life exposure. Therefore, the aim of this study was to examine the impact of real-life, 90-days exposure to mixture of toxic metal(oid)s, Cd, Pb, Ni, Cr, As and Hg, on the nuclear factor erythroid 2-related factor 2 and hemoxygenase-1 (Nrf2/HO-1) signalling and redox status by assessing total sulfhydryl groups (SH), glutathione (GSH), superoxide dismutase activity (SOD), malondialdehyde (MDA), and ischemia modified albumin (IMA) in the liver and kidney of Wistar rats. Animals (20 males and 20 females) were randomized in 2 control and 6 treated groups that received by oral gavage mixture of metal(oid)s solutions in doses that reflect blood metal(oid) levels determined in previous human biomonitoring study as benchmark dose (F/M _BMD), median (F/M _MED), and 95th percentile (F/M _95). Our results have shown that metal(oid)s mixture impaired the activation of the Nrf2/HO-1 pathway in the kidney and liver of male rats and kidney of female rats, followed by depletion of GSH levels in males. Additionally, in males elevated levels of IMA in the liver were observed, while in both genders increased MDA levels were observed in the kidney. Interestingly, the effects were more pronounced in male than in female rats. This study is among the first that examined hepato-renal toxic mechanisms of real-life metal mixture exposure, while our results might be of immense importance for assessing the risk of exposure to mixtures of toxic substances.
Collapse
Affiliation(s)
- Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia.
| | - Danijela Đukic-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy; Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for the Environmental Protection and Research, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|