1
|
Zhong J, Ding S, Zou X, Yu M, Du S, Wu D. Unraveling the impact of intervention strategies and oxygen disparity in humification during domestic waste composting. BIORESOURCE TECHNOLOGY 2025; 416:131736. [PMID: 39489310 DOI: 10.1016/j.biortech.2024.131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
This study constructs three different photovoltaic assisted composting systems to treat rural domestic waste, and explores the interaction pathways between biomacromolecules and other factors under oxygen disparity at gradient heights of the compost. The optimized mode of regular turning and ventilation-dehydration significantly reduced the moisture content by 53.6% and increased the seed germination index by 35.6%. The oxygen content at different heights under the optimized mode significantly affects the physicochemical properties of the compost, and the degradation of cellulose, hemicellulose, and protein in the middle is higher than other parts. The structural equation model shows that the physicochemical properties at the bottom are affected by biomacromolecules, which may be related to volatile fatty acids(VFAs) produced under low oxygen conditions.The research results show that using manual turning and ventilation-dehydration as the optimized process can promote compost maturity, and oxygen concentration has an important impact on the humification process of the compost.
Collapse
Affiliation(s)
- Jialin Zhong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Xixuan Zou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Mengwen Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
2
|
Liu Z, Luo F, He L, Wang S, Wu Y, Chen Z. Physical conditioning methods for sludge deep dewatering: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121207. [PMID: 38788408 DOI: 10.1016/j.jenvman.2024.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Sludge is an inevitable waste product of sewage treatment with a high water content and large volume, it poses a significant threat of secondary pollution to both water and the atmosphere without proper disposal. In this regard, dewatering has emerged as an attractive method in sludge treatment, as it can reduce the sludge volume, enhance its transportability and calorific value, and even decrease the production of landfill leachate. In recent years, physical conditioning methods including non-chemical conditioners or energy input alone, have been extensively researched for their potential to enhance sludge dewatering efficiency, such as thermal treatment, freeze-thaw, microwave, ultrasonic, skeleton builders addition, and electro-dewatering, as well as combined methods. The main objective of this paper is to comprehensively evaluate the dewatering capacity of various physical conditioning methods, and identify key factors affecting sludge dewatering efficiency. In addition, future research anticipated directions and outlooks are proposed. This work is expected to provide valuable insights for developing efficient, eco-friendly, and low-energy consumption techniques for deep sludge dewatering.
Collapse
Affiliation(s)
- Zhuo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingzhi He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siqi Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Liu QQ, Yang Q, Wang YR, Jiang YX, Chen HQ. Pretreatment with low-frequency magnetic fields can improve the functional properties of pea globulin amyloid-like fibrils. Food Chem 2024; 439:138135. [PMID: 38064827 DOI: 10.1016/j.foodchem.2023.138135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Plant protein fibrils have recently attracted considerable attention due to their superior mechanical and interfacial properties. The objective of this study was to evaluate the feasibility of low-frequency magnetic field (LF-MF) pretreatment in enhancing the conversion and functional characteristics of the amyloid-like fibrils derived from pea globulin (PG), which was considered a sustainable hypoallergenic protein. The results showed that LF-MF-treated PG (MPG) assembled into longer amyloid-like fibrils compared with native PG (NPG). The MPG presented similar gelling, emulsifying, and foaming properties to the NPG, while the fibril samples exhibited significantly improved functional properties. Moreover, the amyloid-like fibrils generated from the MPG (MPGF) showed large aspect ratios accompanied by superior solubility, molecular flexibility, emulsion stability, and gelling properties. The improved functional properties of the amyloid-like fibrils generated from the MPG can provide a promising outlook for expanding the applications of the PG in food, medicine and other fields.
Collapse
Affiliation(s)
- Qing-Qing Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Qin Yang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Ya-Ru Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Yi-Xuan Jiang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China
| | - Han-Qing Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China; School of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|