1
|
Gekière A, Breuer L, Dorio L, Evrard D, Vanderplanck M, Michez D. Bumble bees do not avoid field-realistic but innocuous concentrations of cadmium and copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1123-1134. [PMID: 39261366 DOI: 10.1007/s10646-024-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Bee populations are facing numerous stressors globally, including environmental pollution by trace metals and metalloids. Understanding whether bees can detect and avoid these pollutants in their food is pivotal, as avoidance abilities may mitigate their exposure to xenobiotics. While these pollutants are known to induce sublethal effects in bees, such as disrupting physiological mechanisms, their potential impacts on locomotive abilities, fat metabolism, and reproductive physiology remain poorly understood. In this study, utilising workers of the buff-tailed bumble bee and two prevalent trace metals, namely cadmium and copper, we aimed to address these knowledge gaps for field-realistic concentrations. Our findings reveal that workers did not reject field-realistic concentrations of cadmium and copper in sucrose solutions. Moreover, they did not reject lethal concentrations of cadmium, although they rejected lethal concentrations of copper. Additionally, we observed no significant effects of field-realistic concentrations of these metals on the walking and flying activities of workers, nor on their fat metabolism and reproductive physiology. Overall, our results suggest that bumble bees may not avoid cadmium and copper at environmental concentrations, but ingestion of these metals in natural settings may not adversely affect locomotive abilities, fat metabolism, or reproductive physiology. However, given the conservative nature of our study, we still recommend future research to employ higher concentrations over longer durations to mimic conditions in heavily polluted areas (i.e., mine surrounding). Furthermore, investigations should ascertain whether field-realistic concentrations of metals exert no impact on bee larvae.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium.
| | - Luna Breuer
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Luca Dorio
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Dimitri Evrard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | - Maryse Vanderplanck
- CEFE, CNRS, University of Montpellier, EPHE, IRD, 1919 Route de Mende, 34293, Montpellier, France
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| |
Collapse
|
2
|
Botina LL, Barbosa WF, Viana TA, de Oliveira Faustino A, Martins GF. Physiological responses of the stingless bee Partamona helleri to oral exposure to three agrochemicals: impact on antioxidant enzymes and hemocyte count. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54648-54658. [PMID: 39207621 DOI: 10.1007/s11356-024-34790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 μg mL-1) or spinosad (0.85 μg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 μg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.
Collapse
Affiliation(s)
- Lorena Lisbetd Botina
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
3
|
Choi JY, Chon K, Kim J, Vasamsetti BMK, Kim BS, Yoon CY, Hwang S, Park KH, Lee JH. Assessment of Lambda-Cyhalothrin and Spinetoram Toxicity and Their Effects on the Activities of Antioxidant Enzymes and Acetylcholinesterase in Honey Bee ( Apis mellifera) Larvae. INSECTS 2024; 15:587. [PMID: 39194792 DOI: 10.3390/insects15080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
Honeybees play a crucial role as agricultural pollinators and are frequently exposed to various pollutants, including pesticides. In this study, we aimed to evaluate the toxicity of lambda-cyhalothrin (LCY) and spinetoram (SPI) in honey bee larvae reared in vitro through single (acute) and repeated (chronic) exposure. The acute LD50 values for LCY and SPI were 0.058 (0.051-0.066) and 0.026 (0.01-0.045) μg a.i./larva, respectively. In chronic exposure, the LD50 values of LCY and SPI were 0.040 (0.033-0.046) and 0.017 (0.014-0.019) μg a.i./larva, respectively. The chronic no-observed-effect dose of LCY and SPI was 0.0125 μg a.i./larva. Adult deformation rates exceeded 30% in all LCY treatment groups, showing statistically significant differences compared to the solvent control group (SCG). Similarly, SPI-treated bees exhibited significantly more deformities than SCG. Furthermore, we examined the activities of several enzymes, namely, acetylcholinesterase (AChE), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD), in larvae, pupae, and newly emerged bees after chronic exposure at the larval stage (honey bee larval chronic LD50, LD50/10 (1/10th of LD50), and LD50/20 (1/20th of LD50)). LCY and SPI induced significant changes in detoxification (GST), antioxidative (SOD and CAT), and signaling enzymes (AChE) during the developmental stages (larvae, pupae, and adults) of honey bees at sublethal and residue levels. Our results indicate that LCY and SPI may affect the development of honey bees and alter the activity of enzymes associated with oxidative stress, detoxification, and neurotransmission. These results highlight the potential risks that LCY and SPI may pose to the health and normal development of honey bees.
Collapse
Affiliation(s)
- Ji-Yeong Choi
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyongmi Chon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Juyeong Kim
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Bo-Seon Kim
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Chang-Young Yoon
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sojeong Hwang
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Kyeong-Hun Park
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| |
Collapse
|
4
|
Botina LL, Barbosa WF, Martins GF. Toxicological Assessments of Agrochemicals in Stingless Bees in Brazil: a Systematic Review. NEOTROPICAL ENTOMOLOGY 2024; 53:480-489. [PMID: 38358646 DOI: 10.1007/s13744-024-01132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
The growing concern with the decline of pollinators worldwide is centered on honey bees, due to their wide distribution, economic, and ecological importance. This type of concern remained less evident for stingless bees, which are widely distributed in the Neotropics, until recently. Since exposure to agrochemicals has been identified as one of the potential threats to bees, the present systematic review compiled information from toxicological evaluations in stingless bees in Brazil, home to a considerable portion of the existing species. This systematic review was performed considering species, research institutions, scientific journals, metrics, experimental set ups, and agrochemicals. The first article in this topic was published in 2010. Since then, 93 scientific papers were published, which showed that there are few species of stingless bees used for toxicological evaluations and Brazilian institutions lead these evaluations. Only 1.5% of the stingless bees' species that occur in Brazil were assessed through chronic exposure in the larval stage. The Universidade Federal de Viçosa (UFV) is responsible for 37% of the total publications. The main route of exposure was acute, using adults in laboratory conditions. The main group of agrochemicals studied were insecticides, in particular the neonicotinoids. The current results reveal the advances achieved and point out the gaps that still need to be filled considering toxicological evaluations in stingless bees.
Collapse
|
5
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|