1
|
Qin H, Guo M, Zhou C, Li J, Jing X, Wan Y, Song W, Yu H, Peng G, Yao Z, Liu J, Hu K. Enhancing singlet oxygen production of dioxygen activation on the carbon-supported rare-earth oxide nanocluster and rare-earth single atom catalyst to remove antibiotics. WATER RESEARCH 2024; 252:121184. [PMID: 38377699 DOI: 10.1016/j.watres.2024.121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Singlet oxygen (1O2) is extensively employed in the fields of chemical, biomedical and environmental. However, it is still a challenge to produce high- concentration 1O2 by dioxygen activation. Herein, a system of carbon-supported rare-earth oxide nanocluster and single atom catalysts (named as RE2O3/RE-C, RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) with similar morphology, structure, and physicochemical characteristic are constructed to activate dissolved oxygen (DO) to enhance 1O2 production. The catalytic activity trends and mechanisms are revealed experimentally and are also proven by theoretical analyses and calculations. The 1O2 generation activity trend is Gd2O3/Gd-C>Er2O3/Er-C>Sm2O3/Sm-C>pristine carbon (C). More than 95.0% of common antibiotics (ciprofloxacin, ofloxacin, norfloxacin and carbamazepine) can be removed in 60 min by Gd2O3/Gd-C. Density functional theory calculations indicate that Gd2O3 nanoclusters and Gd single atoms exhibit the moderate adsorption energy of ·O2- to enhance 1O2 production. This study offers a universal strategy to enhance 1O2 production in dioxygen activation for future application and reveals the natural essence of basic mechanisms of 1O2 production via rare-earth oxide nanoclusters and rare-earth single atoms.
Collapse
Affiliation(s)
- Haonan Qin
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Meina Guo
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Chenliang Zhou
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jiarong Li
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xuequan Jing
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yinhua Wan
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Song
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongdong Yu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Guan Peng
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Zhangwei Yao
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jiaming Liu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Kang Hu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China.
| |
Collapse
|