1
|
Deo L, Osborne JW, Benjamin LK. Harnessing microbes for heavy metal remediation: mechanisms and prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:116. [PMID: 39738768 DOI: 10.1007/s10661-024-13516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Contamination by heavy metals (HMs) poses a significant threat to the ecosystem and its associated micro and macroorganisms, leading to ill effects on humans which necessitate the requirement of effective remediation strategies. Microbial remediation leverages the natural metabolic abilities of microbes to overcome heavy metal pollution effectively. Some of the mechanisms that aids in the removal of heavy metals includes bioaccumulation, biosorption, and biomineralization. Metals such as Cd, Pb, As, Hg, and Cr are passively adsorbed by energy independent process onto the surface by exopolysaccharide sequestration or utilizing energy to transfer metals into the cell and interact with the biomolecules to be sequestered, or being converted into its various valencies, thereby reducing the toxicity. Application of hyperaccumulators has shown to be effective in the removal of HMs especially while augmented with microbes to the rhizosphere region. Omics studies which include metabolomics and metagenomics provide significant information about the microbial diversities and metabolic processes involved in heavy metal remediation, allowing the development of more reliable and sustainable bioremediation approaches. This review also summarizes the recent advancements in microbial remediation, including genetic engineering and nanotechnology that has revolutionized and offered an unprecedented control and precision in the removal of HMs. These innovations hold a promising stand for enhancing remediation efficiency, scalability, and cost-effectiveness.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Bio Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
3
|
Ma R, Feng Y, Li H, Liu M, Cui Y, Wang J, Shen K, Zhang S, Tong S. Deep-sea microorganisms-driven V 5+ and Cd 2+ removal from vanadium smelting wastewater: Bacterial screening, performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124599. [PMID: 39053797 DOI: 10.1016/j.envpol.2024.124599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The disorderly discharge of industrial wastewater containing heavy metals has caused serious water pollution and ecological environmental risks, ultimately threatening human life and health. Biological treatment methods have obvious advantages, but the existing microorganisms exhibit issues such as poor resistance, adaptability, colonization ability, and low activity. However, a wide variety of microorganisms in deep-sea hydrothermal vent areas are tolerant to heavy metals, possessing the potential for efficient treatment of heavy metal wastewater. Based on this, the study obtained a group of deep-sea microbial communities dominated by Burkholderia-Caballeronia-Paraburkholderia through shake flask experiments from the sediments of deep-sea hydrothermal vents, which can simultaneously achieve the synchronous removal of vanadium and cadmium heavy metals through bioreduction, biosorption, and biomineralization. Through SEM-EDS, XRD, XPS, and FT-IR analyses, it was found that V(V) was reduced to V(IV) through a reduction process and subsequently precipitated. Glucose oxidation accelerated this process. Cd(II) underwent biomineralization to form precipitates such as cadmium hydroxide and cadmium carbonate. Functional groups on the microbial cell surface, such as -CH2, C=O, N-H, -COOH, phosphate groups, amino groups, and M-O moieties, participated in the bioadsorption processes of V(V) and Cd(II) heavy metals. Under optimal conditions, namely a temperature of 40 °C, pH value of 7.5, inoculation amount of 10%, salinity of 4%, COD concentration of 600 mg/L, V5+ concentration of 300 mg/L, and Cd2+ concentration of 40 mg/L, the OD600 can reach its highest at 72 h, with the removal efficiency of V5+, Cd2+, and COD in simulated vanadium smelting wastewater reaching 86.32%, 59.13%, and 61.63%, respectively. This study provides theoretical insights and practical evidence for understanding the dynamic changes in microbial community structure under heavy metal stress, as well as the resistance mechanisms of microbial treatment of industrial heavy metal wastewater.
Collapse
Affiliation(s)
- Ruiyu Ma
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mengyao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yufeng Cui
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianwei Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kaixian Shen
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shibo Zhang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shanzheng Tong
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Cuaxinque-Flores G, Talavera-Mendoza O, Aguirre-Noyola JL, Hernández-Flores G, Martínez-Miranda V, Rosas-Guerrero V, Martínez-Romero E. Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135005. [PMID: 38996684 DOI: 10.1016/j.jhazmat.2024.135005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, β, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.
Collapse
Affiliation(s)
- Gustavo Cuaxinque-Flores
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico
| | - Oscar Talavera-Mendoza
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda, San Juan Bautista s/n, CP 40323 Taxco el Viejo, Guerrero, Mexico.
| | - José Luis Aguirre-Noyola
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Giovanni Hernández-Flores
- CONAHCyT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco de Alarcón 40323, Mexico
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Víctor Rosas-Guerrero
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Tecpan de Galeana 40900, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
5
|
Zhang L, Zhang J, Zhou R, Si Y. β-tricalcium phosphate enhanced biomineralization of Cd 2+ and Pb 2+ by Sporosarcina ureilytica HJ1 and Sporosarcina pasteurii HJ2. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134624. [PMID: 38810579 DOI: 10.1016/j.jhazmat.2024.134624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Microbiologically induced CaCO3 precipitation (MICP) has been proposed as a potential bioremediation method to immobilize contaminating metals. In this study, carbonate mineralizing bacteria HJ1 and HJ2, isolated from heavy metal contaminated soil, was employed for Cd2+ and Pb2+ immobilization with or without β-tricalcium phosphate addition. Compared with the only treatments amended with strains, the combined application of β-tricalcium phosphate and HJ1 improved the immobilization rates of Cd and Pb by 1.49 and 1.70 times at 24 h, and the combined application of β-tricalcium phosphate and HJ2 increased the immobilization rates of Cd and Pb by 1.25 and 1.79 times. The characterization of biomineralization products revealed that Cd2+ and Pb2+ primarily immobilized from the liquid phase as CdCO3 and PbCO3, and the addition of β-tricalcium phosphate facilitated the formation of Ca4.03Cd0.97(PO4)3(OH) and Pb3(PO4)2. Also, the calcium source was related to the speciation of carbonate precipitation and improved the Cd and Pb remediation efficiency. This research demonstrated the feasibility and effectiveness of MICP combined with β-tricalcium phosphate in immobilization of Cd and Pb, which will provide a fundamental basis for future applications of MICP to mitigate soil heavy metal pollutions.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jie Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Runzhan Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Omoregie AI, Ong DEL, Alhassan M, Basri HF, Muda K, Ojuri OO, Ouahbi T. Two decades of research trends in microbial-induced carbonate precipitation for heavy metal removal: a bibliometric review and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52658-52687. [PMID: 39180660 DOI: 10.1007/s11356-024-34722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Amidst the increasing significance of innovative solutions for bioremediation of heavy metal removal, this paper offers a thorough bibliometric analysis of microbial-induced carbonate precipitation (MICP) for heavy metal removal, as a promising technology to tackle this urgent environmental issue. This study focused on articles published from 1999 to 2022 in the Scopus database. It assesses trends, participation, and key players within the MICP for heavy metal sequestration. Among the 930 identified articles, 74 countries participated in the field, with China being the most productive. Varenyam Achal, the Chinese Academy of Sciences, and Chemosphere are leaders in the research landscape. Using VOSviewer and R-Studio, keyword hotspots like "MICP", "urease", and "heavy metals" underscore the interdisciplinary nature of MICP research and its focus on addressing a wide array of environmental and soil-related challenges. VOSviewer emphasises essential terms like "calcium carbonate crystal", while R-Studio highlights ongoing themes such as "soil" and "organic" aspects. These analyses further showcase the interdisciplinary nature of MICP research, addressing a wide range of environmental challenges and indicating evolving trends in the field. This review also discusses the literature concerning the potential of MICP to immobilise contaminants, the evolution of the research outcome in the last two decades, MICP treatment techniques for heavy metal removal, and critical challenges when scaling from laboratory to field. Readers will find this analysis beneficial in gaining valuable insights into the evolving field and providing a solid foundation for future research and practical implementation.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Centre for Borneo Regionalism and Conservation, School of Built Environment, University of Technology Sarawak, No. 1 Jalan University, 96000, Sibu, Sarawak, Malaysia
| | - Dominic Ek Leong Ong
- School of Engineering and Built Environment, Griffith University, 170 Kessels Rd Nathan, South East Queensland, QLD, 4111, Australia
| | - Mansur Alhassan
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Hazlami Fikri Basri
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Khalida Muda
- Department of Water and Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Oluwapelumi Olumide Ojuri
- Built Environment and Sustainable Technologies (BEST), Research Institute, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Tariq Ouahbi
- LOMC, UMR 6294 CNRS, Université Le Havre Normandie, Normandie Université, 53 Rue de Prony, 76058, Le Havre Cedex, France
| |
Collapse
|
7
|
Peng S, Sun Q, Fan L, Zhou J, Zhuo X. Optimized kernel extreme learning machine using Sine Cosine Algorithm for prediction of unconfined compression strength of MICP cemented soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24868-24880. [PMID: 38460037 DOI: 10.1007/s11356-024-32687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Microbially induced calcite precipitation (MICP) is an eco-friendly bio-remediation technology. The unconfined compressive strength (UCS) of MICP cemented soil is an important indicator of repair effectiveness. This study proposes a machine learning technique utilizing the Sine Cosine Algorithm (SCA) to optimize the regularization coefficient C and kernel width γ of the kernel extreme learning machine (KELM) to predict the UCS of MICP cemented soil. To evaluate the performance of the proposed models, a dataset containing 180 groups of the UCS of MICP cemented soil was obtained. The results obtained by SCA-KELM were compared with those obtained by the Random Forest algorithm (RF), Support Vector Machine (SVM), and KELM. The performance of these models was evaluated by the scores of MAE, RMSE, and R2. The results indicate that the SCA-KELM algorithm exhibits optimal prediction performance (Total score: 21). After optimizing KELM with SCA, the total score improved by 110%, suggesting that SCA significantly enhances the KELM performance. After model development, the optimal population size for SCA-KELM was determined to be 50. Based on the mutual information test, an innovative method was developed for categorizing factor sensitivity by employing importance scores as the partitioning criterion. This method categorizes the influencing factors into three tiers: high (importance score: 8.03-11.14%), medium (importance score: 5.93-7.25%), and low (importance score: 3.23-5.18%). These results suggest that the proposed SCA-KELM algorithm can be regarded as a powerful tool for predicting the UCS of MICP cemented soil.
Collapse
Affiliation(s)
- Shuquan Peng
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Qiangzhi Sun
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Ling Fan
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China.
| | - Jian Zhou
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Xiande Zhuo
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| |
Collapse
|