1
|
Pinto AP, Muñoz VR, Tavares MEA, Neto IVDS, Dos Santos JR, Rodrigues GS, Carolino ROG, Alberici LC, Simabuco FM, Teixeira GR, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Freitas EC, Rivas DA, da Silva ASR. Short-term exercise counteracts accelerated ageing impacts on physical performance and liver health in mice. Clin Exp Pharmacol Physiol 2024; 51:e70001. [PMID: 39477552 DOI: 10.1111/1440-1681.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/15/2024] [Accepted: 10/01/2024] [Indexed: 01/06/2025]
Abstract
Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased Bmal1 messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.
Collapse
Affiliation(s)
- Ana P Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Vitor R Muñoz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Maria Eduarda A Tavares
- Department of Physical Education, State University of São Paulo (UNESP), São Paulo, Brazil
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - Ivo V de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Jonathas R Dos Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo-FCFRP USP, São Paulo, Brazil
| | - Guilherme S Rodrigues
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Ruither O Gomes Carolino
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| | - Luciane C Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo-FCFRP USP, São Paulo, Brazil
| | - Fernando M Simabuco
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, State University of São Paulo (UNESP), São Paulo, Brazil
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Ellen C Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Donato A Rivas
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Adelino S R da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
2
|
Obodo D, Outland EH, Hughey JJ. Sex Inclusion in Transcriptome Studies of Daily Rhythms. J Biol Rhythms 2023; 38:3-14. [PMID: 36419398 PMCID: PMC9903005 DOI: 10.1177/07487304221134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
3
|
Aging attenuates diurnal lipid uptake by brown adipose tissue. Aging (Albany NY) 2022; 14:7734-7751. [PMID: 36202134 PMCID: PMC9596214 DOI: 10.18632/aging.204318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Brown adipose tissue (BAT) contributes to cardiometabolic health by taking up glucose and lipids for oxidation, a process that displays a strong diurnal rhythm. While aging has been shown to reduce thermogenic characteristics of BAT, it is as yet unknown whether this reduction is specific to the time of day. Therefore, we assessed whole-body and BAT energy metabolism in young and middle-aged male and female C57BL/6J mice and studied the consequences for lipid metabolism in humanized APOE*3-Leiden.CETP mice (also on a C57BL/6J background). We demonstrate that in middle-aged versus young mice body temperature is lower in both male and female mice, while uptake of triglyceride (TG)-derived fatty acids (FAs) by BAT, reflecting metabolic activity, is attenuated at its peak at the onset of the dark (wakeful) phase in female mice. This coincided with delayed plasma clearance of TG-rich lipoproteins and TG-depleted lipoprotein core remnants, and elevated plasma TGs at the same time point. Furthermore, middle-aged female mice showed increased adiposity, accompanied by lipid accumulation, increased expression of genes involved in lipogenesis, and reduced expression of genes involved in fat oxidation and the intracellular clock machinery in BAT. Peak abundance of lipoprotein lipase (LPL), a crucial regulator of FA uptake, was attenuated in BAT. Our findings suggest that LPL is a potential therapeutic target for restoring diurnal metabolic BAT activity, and that efficiency of strategies targeting BAT may be improved by including time of day as an important factor.
Collapse
|
4
|
Straat ME, Hogenboom R, Boon MR, Rensen PCN, Kooijman S. Circadian control of brown adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158961. [PMID: 33933649 DOI: 10.1016/j.bbalip.2021.158961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Disruption of circadian (~24 h) rhythms is associated with an increased risk of cardiometabolic diseases. Therefore, unravelling how circadian rhythms are regulated in different metabolic tissues has become a prominent research focus. Of particular interest is brown adipose tissue (BAT), which combusts triglyceride-derived fatty acids and glucose into heat and displays a circannual and diurnal rhythm in its thermogenic activity. In this review, the genetic, neuronal and endocrine generation of these rhythms in BAT is discussed. In addition, the potential risks of disruption or attenuation of these rhythms in BAT, and possible factors influencing these rhythms, are addressed.
Collapse
Affiliation(s)
- Maaike E Straat
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick Hogenboom
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Aging selectively dampens oscillation of lipid abundance in white and brown adipose tissue. Sci Rep 2021; 11:5932. [PMID: 33723320 PMCID: PMC7961067 DOI: 10.1038/s41598-021-85455-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid metabolism is under the control of the circadian system and circadian dysregulation has been linked to obesity and dyslipidemia. These factors and outcomes have also been associated to, or affected by, the process of aging. Here, we investigated whether murine white (WAT) and brown (BAT) adipose tissue lipids exhibit rhythmicity and if this is affected by aging. To this end, we have measured the 24 h lipid profiles of WAT and BAT using a global lipidomics analysis of > 1100 lipids. We observed rhythmicity in nearly all lipid classes including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. Overall, ~ 22% of the analyzed lipids were considered rhythmic in WAT and BAT. Despite a general accumulation of lipids upon aging the fraction of oscillating lipids decreased in both tissues to 14% and 18%, respectively. Diurnal profiles of lipids in BAT appeared to depend on the lipid acyl chain length and this specific regulation was lost in aged mice. Our study revealed how aging affects the rhythmicity of lipid metabolism and could contribute to the quest for targets that improve diurnal lipid homeostasis to maintain cardiometabolic health during aging.
Collapse
|
6
|
Genome-wide circadian regulation: A unique system for computational biology. Comput Struct Biotechnol J 2020; 18:1914-1924. [PMID: 32774786 PMCID: PMC7385043 DOI: 10.1016/j.csbj.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.
Collapse
Key Words
- ABSR, Autoregressive Bayesian spectral regression
- AMPK, AMP-activated protein kinase
- AR, Arrhythmic feeding
- ARSER, Harmonic regression based on autoregressive spectral estimation
- BMAL1, The aryl hydrocarbon receptor nuclear translocator-like (ARNTL)
- CCD, Cortical collecting duct
- CR, Calorie-restricted diet
- CRY, Cryptochrome
- Circadian regulatory network
- Circadian rhythms
- Circadian transcriptome
- Cycling genes
- DCT/CNT, Distal convoluted tubule and connecting tubule
- DD, Dark: dark
- Energetic cost
- HF, High fat diet
- JTK_CYCLE, Jonckheere-Terpstra-Kendall (JTK) cycle
- KD, Ketogenic diet
- LB, Ad libitum
- LD, Light:dark
- LS, Lomb-Scargle
- Liver-RE, Liver clock reconstituted BMAL1-deficient mice
- NAD, Nicotinamide adenine dinucleotides
- ND, Normal diet
- NR, Night-restricted feeding
- PAS, PER-ARNT-SIM
- PER, Period
- RAIN, Rhythmicity Analysis Incorporating Nonparametric methods
- RF, Restricted feeding
- SCN, Suprachiasmatic nucleus
- SREBP, The sterol regulatory element binding protein
- TTFL, Transcriptional-translational feedback loop
- WT, Wild type
- eJTK_CYCLE, Empirical JTK_CYCLE
Collapse
|
7
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Welz PS, Benitah SA. Molecular Connections Between Circadian Clocks and Aging. J Mol Biol 2019; 432:3661-3679. [PMID: 31887285 DOI: 10.1016/j.jmb.2019.12.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clockwork has evolved as a timing system that allows the daily environmental changes to be anticipated so that behavior and tissue physiology can be adjusted accordingly. The circadian clock synchronizes the function of all cells within tissues in order to temporally separate preclusive and potentially harmful physiologic processes and to establish a coherent temporal organismal physiology. Thus, the proper functioning of the circadian clockwork is essential for maintaining cellular and tissue homeostasis. Importantly, aging reduces the robustness of the circadian clock, resulting in disturbed sleep-wake cycles, a lowered capacity to synchronize circadian rhythms in peripheral tissues, and reprogramming of the circadian clock output at the molecular function levels. These circadian clock-dependent behavioral and molecular changes in turn further accelerate the process of aging. Here we review the current knowledge about how aging affects the circadian clock, how the functional decline of the circadian clock affects aging, and how the circadian clock machinery and the molecular processes that underlie aging are intertwined.
Collapse
Affiliation(s)
- Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - S A Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
9
|
Meal Timing, Aging, and Metabolic Health. Int J Mol Sci 2019; 20:ijms20081911. [PMID: 31003407 PMCID: PMC6514931 DOI: 10.3390/ijms20081911] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
A growing body of evidence suggests that meal timing is an important factor for metabolic regulation and that the circadian clock tightly interacts with metabolic functions. The proper functioning of the circadian clock is critical for maintaining metabolic health. Therefore, chrononutrition, a novel discipline which investigates the relation between circadian rhythms, nutrition, and metabolism, has attracted increasing attention in recent years. Circadian rhythms are strongly affected by obesity, type 2 diabetes, and other dietary-induced metabolic diseases. With increasing age, the circadian system also undergoes significant changes which contribute to the dysregulation of metabolic rhythms. Metabolic diseases are a major health concern, particularly in light of a growing aging population, and effective approaches for their prevention and treatment are urgently needed. Recently, animal studies have impressively shown beneficial effects of several dietary patterns (e.g., caloric restriction or time-restricted feeding) on circadian rhythms and metabolic outcomes upon nutritional challenges. Whether these dietary patterns show the same beneficial effects in humans is, however, less well studied. As indicated by recent studies, dietary approaches might represent a promising, attractive, and easy-to-adapt strategy for the prevention and therapy of circadian and metabolic disturbances in humans of different age.
Collapse
|
10
|
Gubin DG, Weinert D. Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms. ADVANCES IN GERONTOLOGY 2015; 5:209-218. [DOI: 10.1134/s2079057015040086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
11
|
Abstract
Circadian clocks have evolved a slowing-down mechanism. Temperature may be the original and universal time-giver to the organism. Brown adipose tissue generates heat and guides the circadian rhythm of core body temperature. The cryptochrome proteins regulate the temperature entrainability, and their dysfunction may let the activation of brown adipose tissue affect the brain more easily. Therefore, the activity of brown adipose tissue may compromise the slowing-down mechanism and thereby contribute to the emergence of mood disorders and the increase in suicide mortality around the time of puberty.
Collapse
Affiliation(s)
- Timo Partonen
- a National Institute for Health and Welfare , Department of Health , Helsinki , Finland
| |
Collapse
|
12
|
Janich P, Meng QJ, Benitah SA. Circadian control of tissue homeostasis and adult stem cells. Curr Opin Cell Biol 2014; 31:8-15. [PMID: 25016176 DOI: 10.1016/j.ceb.2014.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023]
Abstract
The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.
Collapse
Affiliation(s)
- Peggy Janich
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Qing-Jun Meng
- MRC Career Development Award Fellow, Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Salvador Aznar Benitah
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain.
| |
Collapse
|
13
|
Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 2013; 4:2632. [DOI: 10.1038/ncomms3632] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022] Open
|
14
|
Ding DC, Chou HL, Hung WT, Liu HW, Chu TY. Human adipose-derived stem cells cultured in keratinocyte serum free medium: Donor's age does not affect the proliferation and differentiation capacities. J Biomed Sci 2013; 20:59. [PMID: 23945033 PMCID: PMC3766706 DOI: 10.1186/1423-0127-20-59] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/05/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Although donor age-related effects of characteristics of mesenchymal stem cells (MSC), such as a decrease in the proliferation and differentiation capacity and an increase of senescence and apoptosis, are evident, such effects are generally less prominent in adipose-derived stem cells (ASC). Using a hormone and growth factor rich medium (KFSM), this study cultured ASC from abdominal subcutaneous fat of 27 adult females in three age groups: 30-39 y, 40-49 y and 50-60 y, and investigated the growth and differentiation characteristics. RESULTS The derived ASC had an immunophenotype similar to that of bone marrow derived MSC (BMSC). They could be stably expanded with an average population doubling time of 21.5 ± 2.3 h. Other than a higher pre-adipogenic commitment and a lower adipogenic differentiation capability in ASC derived from the old age group, other characteristics including proliferation rate, doubling time, telomere length, as well as the osteogenic and chondrogenic differentiation capacity were the same regardless of the donor's age. CONCLUSIONS The study demonstrates a promising proliferation and differentiation capabilities of ASC regardless of the donor's age. The compromised adipogenic potential in the older donors could be a benefit for their application in regeneration therapy.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital; Tzu Chi University, Hualien, Taiwan.
| | | | | | | | | |
Collapse
|