1
|
Stępień K, Enkhbaatar T, Kula-Maximenko M, Jurczyk Ł, Skoneczna A, Mołoń M. Restricting the level of the proteins essential for the regulation of the initiation step of replication extends the chronological lifespan and reproductive potential in budding yeast. Biogerontology 2024; 25:859-881. [PMID: 38844751 PMCID: PMC11374879 DOI: 10.1007/s10522-024-10113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 09/05/2024]
Abstract
Aging is defined as a progressive decline in physiological integrity, leading to impaired biological function, including fertility, and rising vulnerability to death. Disorders of DNA replication often lead to replication stress and are identified as factors influencing the aging rate. In this study, we aimed to reveal how the cells that lost strict control of the formation of crucial for replication initiation a pre-initiation complex impact the cells' physiology and aging. As strains with the lower pre-IC control (lowPICC) we used, Saccharomyces cerevisiae heterozygous strains having only one functional copy of genes, encoding essential replication proteins such as Cdc6, Dbf4, Sld3, Sld7, Sld2, and Mcm10. The lowPICC strains exhibited a significant reduction in the respective genes' mRNA levels, causing cell cycle aberrations and doubling time extensions. Additionally, the reduced expression of the lowPICC genes led to an aberrant DNA damage response, affected cellular and mitochondrial DNA content, extended the lifespan of post-mitotic cells, and increased the yeast's reproductive potential. Importantly, we also demonstrated a strong negative correlation between the content of cellular macromolecules (RNA, proteins, lipids, polysaccharides) and aging. The data presented here will likely contribute to the future development of therapies for treating various human diseases.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959, Rzeszów, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601, Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601, Rzeszów, Poland.
| |
Collapse
|
2
|
Odoh CK, Madrigal-Perez LA, Kamal R. Glucosylglycerol and proline reverse the effects of glucose on Rhodosporidium toruloides lifespan. Arch Microbiol 2024; 206:195. [PMID: 38546876 DOI: 10.1007/s00203-024-03930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Rhodosporidium toruloides is a novel cell factory used to synthesis carotenoids, biosurfactants, and biofuel feedstocks. However, research on R. toruloides has generally centred on the manufacture of biochemicals, while analyses of its longevity have received scant attention. Understanding of R. toruloides longevity under different nutrient conditions could help to improve its biotechnological significance and metabolite production. Glucosylglycerol (GG) and proline are osmoprotectants that could revert the harmful effects of environmental stress. This study examined how GG and proline affect R. toruloides strain longevity under glucose nutrimental stress. Herein, we provide evidence that GG and proline enhance cell performance and viability. These compatible solutes neutralises the pro-ageing effects of high glucose (10% glucose) on the yeast cell and reverse its cellular stress. GG exhibits the greatest impact on lifespan extension at 100 mM, whereas proline exerts effect at 2 mM. Our data reveal that these compounds significantly affect the culture medium osmolarity. Moreso, GG and proline decreased ROS production and mitohormetic lifespan regulation, respectively. The data indicates that these solutes (proline and GG) support the longevity of R. toruloides at a pro-ageing high glucose culture condition.
Collapse
Affiliation(s)
- Chuks Kenneth Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | | | - Rasool Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023, China
| |
Collapse
|
3
|
Stępień K, Skoneczna A, Kula-Maximenko M, Jurczyk Ł, Mołoń M. Disorders in the CMG helicase complex increase the proliferative capacity and delay chronological aging of budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119621. [PMID: 37907194 DOI: 10.1016/j.bbamcr.2023.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The replication of DNA requires specialized and intricate machinery. This machinery is known as a replisome and is highly evolutionarily conserved, from simple unicellular organisms such as yeast to human cells. The replisome comprises multiple protein complexes responsible for various steps in the replication process. One crucial component of the replisome is the Cdc45-MCM-GINS (CMG) helicase complex, which unwinds double-stranded DNA and coordinates the assembly and function of other replisome components, including DNA polymerases. The genes encoding the CMG helicase components are essential for initiating DNA replication. In this study, we aimed to investigate how the absence of one copy of the CMG complex genes in heterozygous Saccharomyces cerevisiae cells impacts the cells' physiology and aging. Our data revealed that these cells exhibited a significant reduction in transcript levels for the respective CMG helicase complex proteins, as well as disruptions in the cell cycle, extended doubling times, and alterations in their biochemical profile. Notably, this study provided the first demonstration that cells heterozygous for genes encoding subunits of the CMG helicase exhibited a significantly increased reproductive potential and delayed chronological aging. Additionally, we observed a noteworthy correlation between RNA and polysaccharide levels in yeast and their reproductive potential, as well as a correlation between fatty acid levels and cell doubling times. Our findings also shed new light on the potential utility of yeast in investigating potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, 35-959 Rzeszów, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Rzeszów University, 35-601 Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, 35-601 Rzeszów, Poland.
| |
Collapse
|
4
|
Enkhbaatar T, Skoneczny M, Stępień K, Mołoń M, Skoneczna A. Live while the DNA lasts. The role of autophagy in DNA loss and survival of diploid yeast cells during chronological aging. Aging (Albany NY) 2023; 15:9965-9983. [PMID: 37815879 PMCID: PMC10599738 DOI: 10.18632/aging.205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Aging is inevitable and affects all cell types, thus yeast cells are often used as a model in aging studies. There are two approaches to studying aging in yeast: replicative aging, which describes the proliferative potential of cells, and chronological aging, which is used for studying post-mitotic cells. While analyzing the chronological lifespan (CLS) of diploid Saccharomyces cerevisiae cells, we discovered a remarkable phenomenon: ploidy reduction during aging progression. To uncover the mechanism behind this unusual process we used yeast strains undergoing a CLS assay, looking for various aging parameters. Cell mortality, regrowth ability, autophagy induction and cellular DNA content measurements indicated that during the CLS assay, dying cells lost their DNA, and only diploids survived. We demonstrated that autophagy was responsible for the gradual loss of DNA. The nucleophagy marker activation at the start of the CLS experiment correlated with the significant drop in cell viability. The activation of piecemeal microautophagy of nucleus (PMN) markers appeared to accompany the chronological aging process until the end. Our findings emphasize the significance of maintaining at least one intact copy of the genome for the survival of post-mitotic diploid cells. During chronological aging, cellular components, including DNA, are exposed to increasing stress, leading to DNA damage and fragmentation in aging cells. We propose that PMN-dependent clearance of damaged DNA from the nucleus helps prevent genome rearrangements. However, as long as one copy of the genome can be rebuilt, cells can still survive.
Collapse
Affiliation(s)
- Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Karolina Stępień
- Institute of Medical Sciences, Rzeszów University, Rzeszów 35-959, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów 35-601, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
5
|
Mołoń M, Zaciura M, Wojdyła D, Molestak E. Increasing the number of ribosomal uL6 mRNA copies accelerates aging of the budding yeast. Mol Biol Rep 2023; 50:2933-2941. [PMID: 36576675 PMCID: PMC10011313 DOI: 10.1007/s11033-022-08187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aging is a biological process from which there is no escape. Diverse factors contribute to aging, most notably cell energy metabolism. Ribosome biogenesis and translation are the two main energy-consuming processes that contribute to longevity. It has repeatedly been shown that translation disorders caused by deletion of ribosomal genes delay aging. However, the effect of increasing the amount of ribosomal proteins has remained elusive. METHODS AND RESULTS We determine the relative level of the uL6A and uL6B mRNA derived from the genome and the plasmid. The appearance of additional copies of plasmid-derived uL6 leads to an increase in uL6A and uL6B derived from the BY4741 genome (mainly form B). The relative amount of mRNA of plasmid form B is several times greater than the amount of mRNA in plasmid form A. The level of mRNA derived from the plasmid is increased many times compared to the mRNA of genomic origin. Additionally, the study indicates that excess of uL6A is a limiting or even harmful factor in the reaction to stressful conditions. Therefore, our hypothesis states that uL6A transcription or mRNA uL6A degradation in yeast cells are tightly regulated. our data clearly demonstrate that aging is accelerated when additional copies of uL6 paralogs appear. CONCLUSION Overexpression of both uL6A or uL6B accelerates aging in the budding yeast. The level of uL6A mRNA is tightly controlled by yeast cell. The uL6a protein plays a pivotal role in the response to environmental stress, including oxidative and osmotic stress, and thus may fall into the class of moonlighting ribosomal proteins with extra-ribosomal function.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland.
| | - Monika Zaciura
- Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dominik Wojdyła
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
6
|
Odoh CK, Kamal R, Xue H, Lyu L, Arnone JT, Zhao ZK. Glucosylglycerol Extends Chronological Lifespan of the Budding Yeast via an Increased Osmolarity Response. Indian J Microbiol 2023; 63:42-49. [PMID: 37188237 PMCID: PMC10172420 DOI: 10.1007/s12088-023-01055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Glucosylglycerol (GG) is an osmolyte that protects cells from extreme conditions. It is produced by sucrose phosphorylase, an enzyme that uses sucrose and glycerol as substrate. GG protects tissue integrity in desert plants during harsh conditions and guards cyanobacteria against high salinity (halotolerant). However, no extensive research has been conducted on the lifespan application of this compound on the yeast Saccharomyces cerevisiae. We designed this study to (1) characterize GG's effect on yeast chronological lifespan (CLS) and (2) to determine the mechanisms underlying its lifespan promotion on strain DBY746. The results obtained in our study confirm that GG causes increased longevity when administered at moderate doses (48 mM and 120 mM). In addition, we discovered that GG promotes yeast cell longevity by increasing the osmolarity of the culture medium. The maximum lifespan increased by approximately 15.38% and 34.6%, (i.e., 115.38 and 134.61) respectively, upon administration of GG at 48 mM and 120 mM concentrations. Elucidation of the mechanisms underlying this positive response suggests that GG promotes CLS by activities that modulate reactive oxygen species (ROS) generation, as evident in its increased ROS generation (mitohormesis). An increase in medium osmolarity caused by GG supplementation triggers ROS production and promotes longevity in the yeast (S. cerevisiae). An in-depth study on the potential application of this molecule in aging research is crucial; this will aid in expounding the mechanisms of this geroprotector and its longevity supportive tendencies. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01055-y.
Collapse
Affiliation(s)
- C. K. Odoh
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - R. Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023 China
| | - H. Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - L. Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023 China
| | - J. T. Arnone
- Department of Biology, William Paterson University, Wayne, NJ 07470 USA
| | - Z. K. Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023 China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Rd, Dalian, 116023 China
| |
Collapse
|
7
|
Mołoń M, Stępień K, Kielar P, Vasileva B, Lozanska B, Staneva D, Ivanov P, Kula-Maximenko M, Molestak E, Tchórzewski M, Miloshev G, Georgieva M. Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing. Cells 2022; 11:cells11172754. [PMID: 36078161 PMCID: PMC9454676 DOI: 10.3390/cells11172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ageing is accompanied by dramatic changes in chromatin structure organization and genome function. Two essential components of chromatin, the linker histone Hho1p and actin-related protein 4 (Arp4p), have been shown to physically interact in Saccharomyces cerevisiae cells, thus maintaining chromatin dynamics and function, as well as genome stability and cellular morphology. Disrupting this interaction has been proven to influence the stability of the yeast genome and the way cells respond to stress during chronological ageing. It has also been proven that the abrogated interaction between these two chromatin proteins elicited premature ageing phenotypes. Alterations in chromatin compaction have also been associated with replicative ageing, though the main players are not well recognized. Based on this knowledge, here, we examine how the interaction between Hho1p and Arp4p impacts the ageing of mitotically active yeast cells. For this purpose, two sets of strains were used—haploids (WT(n), arp4, hho1Δ and arp4 hho1Δ) and their heterozygous diploid counterparts (WT(2n), ARP4/arp4, HHO1/hho1Δ and ARP4 HHO1/arp4 hho1Δ)—for the performance of extensive morphological and physiological analyses during replicative ageing. These analyses included a comparative examination of the yeast cells’ chromatin structure, proliferative and reproductive potential, and resilience to stress, as well as polysome profiles and chemical composition. The results demonstrated that the haploid chromatin mutants arp4 and arp4 hho1Δ demonstrated a significant reduction in replicative and total lifespan. These findings lead to the conclusion that the importance of a healthy interaction between Arp4p and Hho1p in replicative ageing is significant. This is proof of the concomitant importance of Hho1p and Arp4p in chronological and replicative ageing.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.M.); (M.G.)
| | - Karolina Stępień
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Patrycja Kielar
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Bonka Lozanska
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
- Correspondence: (M.M.); (M.G.)
| |
Collapse
|
8
|
Stępień K, Skoneczna A, Kula-Maximenko M, Jurczyk Ł, Mołoń M. Depletion of the Origin Recognition Complex Subunits Delays Aging in Budding Yeast. Cells 2022; 11:cells11081252. [PMID: 35455932 PMCID: PMC9032818 DOI: 10.3390/cells11081252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
Precise DNA replication is pivotal for ensuring the accurate inheritance of genetic information. To avoid genetic instability, each DNA fragment needs to be amplified only once per cell cycle. DNA replication in eukaryotes starts with the binding of the origin recognition complex (ORC) to the origins of DNA replication. The genes encoding ORC subunits have been conserved across eukaryotic evolution and are essential for the initiation of DNA replication. In this study, we conducted an extensive physiological and aging-dependent analysis of heterozygous cells lacking one copy of ORC genes in the BY4743 background. Cells with only one copy of the ORC genes showed a significant decrease in the level of ORC mRNA, a delay in the G1 phase of the cell cycle, and an extended doubling time. Here, we also show that the reducing the levels of Orc1-6 proteins significantly extends both the budding and average chronological lifespans. Heterozygous ORC/orcΔ and wild-type diploid cells easily undergo haploidization during chronological aging. This ploidy shift might be related to nutrient starvation or the inability to survive under stress conditions. A Raman spectroscopy analysis helped us to strengthen the hypothesis of the importance of lipid metabolism and homeostasis in aging.
Collapse
Affiliation(s)
- Karolina Stępień
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland;
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (A.S.); (M.M.); Tel.: +48-22-659-70-72 (A.S.); +48-17-785-54-07 (M.M.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszow, 35-601 Rzeszów, Poland;
| | - Mateusz Mołoń
- Department of Biology, Institute of Biology and Biotechnology, University of Rzeszów, 35-601 Rzeszów, Poland;
- Correspondence: (A.S.); (M.M.); Tel.: +48-22-659-70-72 (A.S.); +48-17-785-54-07 (M.M.)
| |
Collapse
|
9
|
Coffee Extends Yeast Chronological Lifespan through Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21249510. [PMID: 33327536 PMCID: PMC7765085 DOI: 10.3390/ijms21249510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is a multifactorial process accompanied by loss of cell function. Science has been looking for factors responsible for aging for many years. However, despite identifying a number of possible causes, the definite reason for aging has been elusive so far. One of the factors contributing to aging is oxygen free radicals. In this context, beneficial effects of coffee on various organisms, including humans, were investigated, although the results are far from unequivocal. In our research, we used the budding yeast-something of a workhorse in many studies, including the studies of aging. So far, the impact of coffee on the aging of cells in the budding yeast experimental setup has little known about it. Here, we provide strong evidence that coffee compounds, particularly flavonoids, are responsible for scavenging free radicals and longevity in yeast lacking Sod1, Sod2 and Rad52 proteins. In this paper, we compared Arabica and Robusta coffee types. We present an analysis of the concentration of caffeine and flavonoids measured by the High-Performance Liquid Chromatography method. We show that Robusta has a much greater antioxidant capacity than Arabica. We also conclude that coffee infusions significantly extend the chronological lifespan of the Saccharomyces cerevisiae yeast cells by protecting cells against reactive oxygen species, double DNA-strand break and decrease in metabolic activity.
Collapse
|
10
|
Effects of Temperature on Lifespan of Drosophila melanogaster from Different Genetic Backgrounds: Links between Metabolic Rate and Longevity. INSECTS 2020; 11:insects11080470. [PMID: 32722420 PMCID: PMC7469197 DOI: 10.3390/insects11080470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
Despite many studies of the aging process, questions about key factors ensuring longevity have not yet found clear answers. Temperature seems to be one of the most important factors regulating lifespan. However, the genetic background may also play a key role in determining longevity. The aim of this study was to investigate the relationship between the temperature, genetic background (fruit fly origin), and metabolic rate on lifespan. Experiments were performed with the use of the wild type Drosophila melanogaster fruit flies originating from Australia, Canada, and Benin and the reference OregonR strain. The metabolic rate of D. melanogaster was measured at 20 °C, 25 °C, and 28 °C in an isothermal calorimeter. We found a strong negative relationship between the total heat flow and longevity. A high metabolic rate leads to increased aging in males and females in all strains. Furthermore, our results showed that temperature has a significant effect on fecundity and body weight. We also showed the usefulness of the isothermal calorimetry method to study the effect of environmental stress conditions on the metabolic activity of insects. This may be particularly important for the forecasting of impact of global warming on metabolic activity and lifespan of various insects.
Collapse
|
11
|
Mołoń M, Molestak E, Kula-Maximenko M, Grela P, Tchórzewski M. Ribosomal Protein uL11 as a Regulator of Metabolic Circuits Related to Aging and Cell Cycle. Cells 2020; 9:cells9071745. [PMID: 32708309 PMCID: PMC7409069 DOI: 10.3390/cells9071745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological phenomenon common to all living organisms. It is thought that the rate of aging is influenced by diverse factors, in many cases related to the control of energy metabolism, i.e., the so-called pro-longevity effects of starvation. Translation, regarded as the main energy consumption process, lies at the center of interest, as it has a significant impact on the longevity phenomenon. It has been shown that perturbations in the translational apparatus may lead to a lower rate of aging. Therefore, the main aim of this study was to investigate aging in relation to the protein biosynthesis circuit, taking into account the uL11 ribosomal protein as a vital ribosomal element. To this end, we used set of yeast mutants with deleted single uL11A or uL11B genes and a double disruptant uL11AB mutant. We applied an integrated approach analyzing a broad range of biological parameters of yeast mutant cells, especially the longevity phenomenon, supplemented with biochemical and high throughput transcriptomic and metobolomic approaches. The analysis showed that the longevity phenomenon is not fully related to the commonly considered energy restriction effect, thus the slow-down of translation does not represent the sole source of aging. Additionally, we showed that uL11 can be classified as a moonlighting protein with extra-ribosomal function having cell-cycle regulatory potential.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszów, 35-601 Rzeszów, Poland
- Correspondence: (M.M.); (M.T.); Tel.: +48-17-7855407 (M.M.); +48-81-5375956 (M.T.)
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Przemysław Grela
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (E.M.); (P.G.)
- Correspondence: (M.M.); (M.T.); Tel.: +48-17-7855407 (M.M.); +48-81-5375956 (M.T.)
| |
Collapse
|
12
|
PCK1 Deficiency Shortens the Replicative Lifespan of Saccharomyces cerevisiae through Upregulation of PFK1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3858465. [PMID: 32104690 PMCID: PMC7037958 DOI: 10.1155/2020/3858465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/29/2019] [Accepted: 01/11/2020] [Indexed: 12/25/2022]
Abstract
The cytosolic isozyme of phosphoenolpyruvate carboxykinase (PCK1) was the first rate-limiting enzyme in the gluconeogenesis pathway, which exerted a critical role in maintaining the blood glucose levels. PCK1 has been established to be involved in various physiological and pathological processes, including glucose metabolism, lipid metabolism, diabetes, and tumorigenesis. Nonetheless, the association of PCK1 with aging process and the detailed underlying mechanisms of PCK1 on aging are still far to be elucidated. Hence, we herein constructed the PCK1-deficient (pck1Δ) and PCK1 overexpression (PCK1 OE) Saccharomyces cerevisiae. The results unveiled that PCK1 deficiency significantly shortened the replicative lifespan (RLS) in the S. cerevisiae, while overexpression of PCK1 prolonged the RLS. Additionally, we noted that the ROS level was significantly enhanced in PCK1-deficient strain and decreased in PCK1 OE strain. Then, a high throughput analysis by deep sequencing was performed in the pck1Δ and wild-type strains, in an attempt to shed light on the effect of PCK1 on the lifespan of aging process. The data showed that the most downregulated mRNAs were enriched in the regulatory pathways of glucose metabolism. Fascinatingly, among the differentially expressed mRNAs, PFK1 was one of the most upregulated genes, which was involved in the glycolysis process and ROS generation. Thus, we further constructed the pfk1Δpck1Δ strain by deletion of PFK1 in the PCK1-deficient strain. The results unraveled that pfk1Δpck1Δ strain significantly suppressed the ROS level and restored the RLS of pck1Δ strain. Taken together, our data suggested that PCK1 deficiency enhanced the ROS level and shortened the RLS of S. cerevisiae via PFK1.
Collapse
|
13
|
Stępień K, Wojdyła D, Nowak K, Mołoń M. Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology 2020; 21:109-123. [PMID: 31659616 PMCID: PMC6942599 DOI: 10.1007/s10522-019-09846-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Curcumin is a biologically active compound of vegetable origin which has a hormetic effect. Pro-health and anti-aging properties of curcumin have been known for years. The main benefit of curcumin is thought to be its anti-oxidative action. Despite vast amount of data confirming age-delaying activity of curcumin in various groups of organisms, so far little has been discovered about curcumin's impact on cell aging in the experimental model of the Saccharomyces cerevisiae budding yeast. We have been able to demonstrate that curcumin significantly increases oxidative stress and accelerates replicative and chronological aging of yeast cells devoid of anti-oxidative protection (with SOD1 and SOD2 gene deletion) and deprived of DNA repair mechanisms (RAD52). Interestingly, curcumin delays aging, probably through hormesis, of the wild-type strain BY4741.
Collapse
Affiliation(s)
- Karolina Stępień
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Dominik Wojdyła
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Katarzyna Nowak
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
14
|
Functional Analysis of the Ribosomal uL6 Protein of Saccharomyces cerevisiae. Cells 2019; 8:cells8070718. [PMID: 31337056 PMCID: PMC6678285 DOI: 10.3390/cells8070718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 11/17/2022] Open
Abstract
The genome-wide duplication event observed in eukaryotes represents an interesting biological phenomenon, extending the biological capacity of the genome at the expense of the same genetic material. For example, most ribosomal proteins in Saccharomyces cerevisiae are encoded by a pair of paralogous genes. It is thought that gene duplication may contribute to heterogeneity of the translational machinery; however, the exact biological function of this event has not been clarified. In this study, we have investigated the functional impact of one of the duplicated ribosomal proteins, uL6, on the translational apparatus together with its consequences for aging of yeast cells. Our data show that uL6 is not required for cell survival, although lack of this protein decreases the rate of growth and inhibits budding. The uL6 protein is critical for the efficient assembly of the ribosome 60S subunit, and the two uL6 isoforms most likely serve the same function, playing an important role in the adaptation of translational machinery performance to the metabolic needs of the cell. The deletion of a single uL6 gene significantly extends the lifespan but only in cells with a high metabolic rate. We conclude that the maintenance of two copies of the uL6 gene enables the cell to cope with the high demands for effective ribosome synthesis.
Collapse
|
15
|
Molon M, Panek A, Molestak E, Skoneczny M, Tchorzewski M, Wnuk M. Daughters of the budding yeast from old mothers have shorter replicative lifespans but not total lifespans. Are DNA damage and rDNA instability the factors that determine longevity? Cell Cycle 2018; 17:1173-1187. [PMID: 29895191 DOI: 10.1080/15384101.2018.1464846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although a lot of effort has been put into the search for factors responsible for aging in yeast mother cells, our knowledge of cellular changes in daughter cells originating from old mothers is still very limited. It has been shown that an old mother is not able to compensate for all negative changes within its cell and therefore transfers them to the bud. In this paper, we show for the first time that daughter cells of an old mother have a reset lifespan expressed in units of time despite drastic reduction of their budding lifespan, which suggests that a single yeast cell has a fixed programmed longevity regardless of the time point at which it was originated. Moreover, in our study we found that longevity parameters are not correlated with the rDNA level, DNA damage, chromosome structure or aging parameters (budding lifespan and total lifespan).
Collapse
Affiliation(s)
- Mateusz Molon
- a Department of Biochemistry and Cell Biology , University of Rzeszow , Rzeszow , Poland
| | - Anita Panek
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| | - Eliza Molestak
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Marek Skoneczny
- d Department of Genetics , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Marek Tchorzewski
- c Department of Molecular Biology , Maria Curie-Sklodowska University , Lublin , Poland
| | - Maciej Wnuk
- b Department of Genetics , University of Rzeszow , Rzeszow , Poland
| |
Collapse
|
16
|
Maslanka R, Kwolek-Mirek M, Zadrag-Tecza R. Consequences of calorie restriction and calorie excess for the physiological parameters of the yeast Saccharomyces cerevisiae cells. FEMS Yeast Res 2018; 17:4628043. [PMID: 29145638 DOI: 10.1093/femsyr/fox087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Glucose plays an important role in cell metabolism and has an impact on cellular physiology. Changes in glucose availability may strongly influence growth rate of the cell size, cell metabolism and the rate of generation of cellular by-products, such as reactive oxygen species. The positive effect of low glucose concentration conditions-calorie restriction is observed in a wide range of species, including the Saccharomyces cerevisiae yeast, yet little is known about the effect of high glucose concentrations-calorie excess. Such analysis seems to be particularly important due to recently common problem of diabetes and obesity. The effect of glucose on morphological and physiological parameters of the yeast cell was conducted using genetic alteration (disruption of genes involved in glucose signalling) and calorie restriction and calorie excess conditions. The results show a significant relationship among extracellular glucose concentration, cell size and reactive oxygen species generation in yeast cells. Furthermore, the results obtained through the use of mutant strains with disorders in glucose signalling pathways suggest that the intracellular level of glucose is more important than its extracellular concentration. These data also suggest that the calorie excess as a factor, which has a significant impact on cell physiology, requires further comprehensive analyses.
Collapse
Affiliation(s)
- Roman Maslanka
- University of Rzeszow, Faculty of Biology and Agriculture, Department of Biochemistry and Cell Biology, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Magdalena Kwolek-Mirek
- University of Rzeszow, Faculty of Biology and Agriculture, Department of Biochemistry and Cell Biology, Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- University of Rzeszow, Faculty of Biology and Agriculture, Department of Biochemistry and Cell Biology, Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
17
|
Molon M, Woznicka O, Zebrowski J. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology 2017; 19:67-79. [PMID: 29189912 PMCID: PMC5765204 DOI: 10.1007/s10522-017-9740-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
The Saccharomyces cerevisiae yeast is one of the most widely used model in studies of cellular and organismal biology, including as aging and proliferation. Although several constraints of aging and budding lifespan have been identified, these processes have not yet been fully understood. Previous studies of aging in yeast have focused mostly on the molecular basics of the underlying mechanisms, while physical aspects, particularly those related to the cell wall, were rather neglected. In this paper, we examine for the first time, to our knowledge, the impact of cell wall biosynthesis disturbances on the lifespan in the budding yeast. We have used a set of cell wall mutants, including knr4Δ, cts1Δ, chs3Δ, fks1Δ and mnn9Δ, which affect biosynthesis of all major cell wall compounds. Our results indicated that impairment of chitin biosynthesis and cell wall protein mannosylation reduced the budding lifespan, while disruption in the 1,3-β-glucan synthase activity had no adverse effect on that parameter. The impact varied in the severity and the most notable effect was observed for the mnn9Δ mutant. What was interesting, in the case of the dysfunction of the Knr4 protein playing the role of the transcriptional regulator of cell wall chitin and glucan synthesis, the lifespan increased significantly. We also report the phenotypic characteristics of cell wall-associated mutants as revealed by imaging of the cell wall using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In addition, our findings support the conviction that achievement of the state of hypertrophy may not be the only factor that determines the budding lifespan.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Jacek Zebrowski
- Department of Plant Physiology, Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
18
|
Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation. Mol Cell Biol 2017; 37:MCB.00060-17. [PMID: 28606931 DOI: 10.1128/mcb.00060-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022] Open
Abstract
The P-stalk represents a vital element within the ribosomal GTPase-associated center, which represents a landing platform for translational GTPases. The eukaryotic P-stalk exists as a uL10-(P1-P2)2 pentameric complex, which contains five identical C-terminal domains, one within each protein, and the presence of only one such element is sufficient to stimulate factor-dependent GTP hydrolysis in vitro and to sustain cell viability. The functional contribution of the P-stalk to the performance of the translational machinery in vivo, especially the role of P-protein multiplication, has never been explored. Here, we show that ribosomes depleted of P1/P2 proteins exhibit reduced translation fidelity at elongation and termination steps. The elevated rate of the decoding error is inversely correlated with the number of the P-proteins present on the ribosome. Unexpectedly, the lack of P1/P2 has little effect in vivo on the efficiency of other translational GTPase (trGTPase)-dependent steps of protein synthesis, including translocation. We have shown that loss of accuracy of decoding caused by P1/P2 depletion is the major cause of translation slowdown, which in turn affects the metabolic fitness of the yeast cell. We postulate that the multiplication of P-proteins is functionally coupled with the qualitative aspect of ribosome action, i.e., the recoding phenomenon shaping the cellular proteome.
Collapse
|
19
|
Gibbs DL, Shmulevich I. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle. PLoS Comput Biol 2017; 13:e1005591. [PMID: 28628618 PMCID: PMC5495484 DOI: 10.1371/journal.pcbi.1005591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 07/03/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: https://github.com/gibbsdavidl/miergolf.
Collapse
Affiliation(s)
- David L. Gibbs
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Ilya Shmulevich
- Institute for Systems Biology, Seattle, Washington, United States of America
| |
Collapse
|