1
|
Libertini G, Corbi G, Shubernetskaya O, Ferrara N. Is Human Aging a Form of Phenoptosis? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1446-1464. [PMID: 36717439 DOI: 10.1134/s0006297922120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A much debated question is whether aging is the cumulative consequence of degenerative factors insufficiently opposed by natural selection, or, on the contrary, an ordered process, genetically determined and regulated, modeled by natural selection, and for which the definition of phenoptotic phenomenon would be entirely appropriate. In this review, theoretical arguments and empirical data about the two hypotheses are exposed, with more evidence in support of the thesis of aging as a form of phenoptosis. However, as the thesis of aging as an adaptive and programmed phenomenon necessarily requires the existence of specific mechanisms that determine to age, such as the subtelomere-telomere theory proposed for this purpose, the evidence supporting the mechanisms described by this theory is reported. In particular, it is highlighted that the recent interpretation of the role of TERRA sequences in the context of subtelomere-telomere theory is a fundamental point in supporting the hypothesized mechanisms. Furthermore, some characteristics of the mechanisms proposed by the theory, such as epigenetic modifications in aging, gradual cell senescence, cell senescence, limits in cell duplications, and fixed size of the telomeric heterochromatin hood, are exposed in their compatibility with both the thesis of aging as phenoptotic phenomenon and the opposite thesis. In short, aging as a form of phenoptosis appears a scientifically sound hypothesis while the opposite thesis should clarify the meaning of various phenomena that appear to invalidate it.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
2
|
Libertini G, Shubernetskaya O, Corbi G, Ferrara N. Is Evidence Supporting the Subtelomere-Telomere Theory of Aging? BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1526-1539. [PMID: 34937532 DOI: 10.1134/s0006297921120026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The telomere theory tries to explain cellular mechanisms of aging as mainly caused by telomere shortening at each duplication. The subtelomere-telomere theory overcomes various shortcomings of telomere theory by highlighting the essential role of subtelomeric DNA in aging mechanisms. The present work illustrates and deepens the correspondence between assumptions and implications of subtelomere-telomere theory and experimental results. In particular, it is investigated the evidence regarding the relationships between aging and (i) epigenetic modifications; (ii) oxidation and inflammation; (iii) telomere protection; (iv) telomeric heterochromatin hood; (v) gradual cell senescence; (vi) cell senescence; and (vii) organism decline with telomere shortening. The evidence appears broadly in accordance or at least compatible with the description and implications of the subtelomere-telomere theory. In short, phenomena of cellular aging, by which the senescence of the whole organism is determined in various ways, appear substantially dependent on epigenetic modifications regulated by the subtelomere-telomere-telomeric hood-telomerase system. These phenomena appear to be not random, inevitable, and irreversible but rather induced and regulated by genetically determined mechanisms, and modifiable and reversible by appropriate methods. All this supports the thesis that aging is a genetically programmed and regulated phenoptotic phenomenon and is against the opposite thesis of aging as caused by random and inevitable degenerative factors.
Collapse
Affiliation(s)
- Giacinto Libertini
- Member of the Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
3
|
Libertini G, Corbi G, Nicola F. Importance and Meaning of TERRA Sequences for Aging Mechanisms. BIOCHEMISTRY (MOSCOW) 2021; 85:1505-1517. [PMID: 33705290 DOI: 10.1134/s0006297920120044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Any theory suggesting an adaptive meaning for aging implicitly postulates the existence of specific mechanisms, genetically determined and modulated, causing progressive decline of an organism. According to the subtelomere-telomere theory, each telomere is covered by a hood formed in the first cell of an organism having a size preserved at each subsequent duplication. Telomere shortening, which is quantitatively different for each cell type according to the telomerase regulation, causes the hood to slide on the subtelomere repressing it by the telomeric position effect. At this point, the theory postulates existence of subtelomeric regulatory sequences, whose progressive transcriptional repression by the hood should cause cellular alterations that would be the likely determinant of aging manifestations. However, sequences with characteristics of these hypothetical sequences have already been described and documented. They are the [sub]TElomeric Repeat-containing RNA (TERRA) sequences. The repression of TERRA sequences causes progressively: (i) down- or up-regulation of many other regulatory sequences; (ii) increase in the probability of activation of cell senescence program (blockage of the ability to replicate and very significant alterations of the cellular functions). When cell senescence program has not been triggered and the repression is partial, there is a partial alteration of the cellular functions that is easily reversible by telomerase activation. Location of the extremely important sequences in chromosomal parts that are most vulnerable to repression by the telomeric hood is evolutionarily unjustifiable if aging is not considered adaptive: this location must be necessarily adaptive with the specific function of determining aging of the cell and consequently of the whole organism.
Collapse
Affiliation(s)
- G Libertini
- Independent researcher, member of the Italian Society for Evolutionary Biology, Asti, 14100, Italy.
| | - G Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy.,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - F Nicola
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy.,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
4
|
Libertini G, Corbi G, Cellurale M, Ferrara N. Age-Related Dysfunctions: Evidence and Relationship with Some Risk Factors and Protective Drugs. BIOCHEMISTRY (MOSCOW) 2020; 84:1442-1450. [PMID: 31870248 DOI: 10.1134/s0006297919120034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The theories interpreting senescence as a phenomenon favored by natural selection require the existence of specific, genetically determined and regulated mechanisms that cause a progressive age-related increase in mortality. The mechanisms defined in the subtelomere-telomere theory suggest that progressive slackening of cell turnover and decline in cellular functions are determined by the subtelomere-telomere-telomerase system, which causes a progressive "atrophic syndrome" in all organs and tissues. If the mechanisms underlying aging-related dysfunctions are similar and having the same origin, it could be hypothesized that equal interventions could produce similar effects. This article reviews the consequences of some factors (diabetes, obesity/dyslipidemia, hypertension, smoking, moderate use and abuse of alcohol) and classes of drugs [statins, angiotensin-converting enzyme (ACE) inhibitors, sartans] in accelerating and anticipating or in counteracting the process of aging. The evidence is compatible with the programmed aging paradigm and the mechanisms defined by the subtelomere-telomere theory but it has no obvious discriminating value against the theories of non-programmed aging paradigm. However, the existence of mechanisms, determined by the subtelomere-telomere-telomerase system and causing a progressive age-related decline in fitness through gradual cell senescence and cell senescence, is not justifiable without an evolutionary motivation. Their existence is expected by the programmed aging paradigm, while is incompatible with the opposite paradigm.
Collapse
Affiliation(s)
- G Libertini
- Independent researcher, member of the Italian Society for Evolutionary Biology, Italy.
| | - G Corbi
- Department of Medicine and Health Sciences, University of Molise, and Italian Society of Gerontology and Geriatrics (SIGG), Campobasso, 86100, Italy.
| | - M Cellurale
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.
| | - N Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy. .,Istituti Clinici Scientifici Maugeri IRCCS, SpA SB, Telese Terme (BN), Italy
| |
Collapse
|
5
|
Running out of developmental program and selfish anti-aging: a new hypothesis explaining the aging process in primates. GeroScience 2019; 41:243-253. [PMID: 30915631 DOI: 10.1007/s11357-019-00060-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 01/05/2023] Open
Abstract
Of the three complementary theories of aging, two (mutation accumulation and antagonistic pleiotropy) were formulated over fifty years ago before the introduction of molecular biology, and the third (disposable soma) is over thirty years old. Despite rigorous research in the past fifty years, none have gained substantial experimental support. Here, I review these theories and introduce a new hypothesis called the selfish anti-aging (SAA). Aging happens because natural selection is indifferent to the organism's life beyond reproduction; however, many mammalian species acquired anti-aging genes, which are providing instructions following completion of developmental, ontogeny, program. Such instructor-genes might be responsible for the elongation of lifespans of primates as a byproduct of parental care program. According to the SAA hypothesis, the animal models used in aging research could be divided into three groups, based on the degree of perceived presence and action of instructor-genes in each group. This new hypothesis is grounded in evolutionary theory and describes the unique primate aging process.
Collapse
|
6
|
Libertini G, Ferrara N, Rengo G, Corbi G. Elimination of Senescent Cells: Prospects According to the Subtelomere-Telomere Theory. BIOCHEMISTRY (MOSCOW) 2019; 83:1477-1488. [PMID: 30878023 DOI: 10.1134/s0006297918120064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell senescence is an artificially reversible condition activated by various factors and characterized by replicative senescence and typical general alteration of cell functions, including extra-cellular secretion. The number of senescent cells increases with age and contributes strongly to the manifestations of aging. For these reasons, research is under way to obtain "senolytic" compounds, defined as drugs that eliminate senescent cells and therefore reduce aging-associated decay, as already shown in some experiments on animal models. This objective is analyzed in the context of the programmed aging paradigm, as described by the mechanisms of the subtelomere-telomere theory. In this regard, positive effects of the elimination of senescent cells and limits of this method are discussed. For comparison, positive effects and limits of telomerase activation are also analyzed, as well of the combined action of the two methods and the possible association of opportune gene modifications. Ethical issues associated with the use of these methods are outlined.
Collapse
Affiliation(s)
- G Libertini
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy.
| | - N Ferrara
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy
| | - G Rengo
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy
| | - G Corbi
- Federico II University, Department of Translational Medical Sciences, Naples, 80138, Italy
| |
Collapse
|
7
|
Libertini G, Ferrara N. Possible interventions to modify aging. BIOCHEMISTRY (MOSCOW) 2016; 81:1413-1428. [DOI: 10.1134/s0006297916120038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|