1
|
Conlin PR, Burke BV, Hobbs C, Hurren KM, Lang AE, Morrison JW, Spacek L, Steil EN, Watts SA, Weinreb JE, Pogach LM. Management of Type 2 Diabetes Mellitus: Synopsis of the Department of Veterans Affairs and Department of Defense Clinical Practice Guideline. Mayo Clin Proc 2024; 99:S0025-6196(24)00210-6. [PMID: 39093266 DOI: 10.1016/j.mayocp.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 08/04/2024]
Abstract
The US Department of Veterans Affairs (VA) and the US Department of Defense (DoD) approved a joint clinical practice guideline for the management of type 2 diabetes. This was the product of a multidisciplinary guideline development committee composed of clinicians from both the VA and the DoD and was overseen by the VA/DoD Evidence Based Practice Work Group. The development process conformed to the standards for trustworthy guidelines as established by the National Academy of Medicine. The guideline development committee developed 12 key questions to guide an evidence synthesis. An independent third party identified relevant randomized controlled trials and systematic reviews that were published from January 2016 through April 2022. This evidence synthesis served as the basis for drafting recommendations. Twenty-six recommendations were generated and rated by the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. Two algorithms were developed to guide clinical decision-making. This synopsis summarizes key aspects of the VA/DoD Clinical Practice Guideline for diabetes in 5 areas: prediabetes, screening for co-occurring conditions, diabetes self-management education and support, glycemic treatment goals, and pharmacotherapy. The guideline is designed to help clinicians and patients make informed treatment decisions to optimize health outcomes and quality of life and to align with patient-centered goals of care.
Collapse
Affiliation(s)
- Paul R Conlin
- Department of Veterans Affairs Boston Healthcare System, Boston, MA.
| | - Brian V Burke
- Department of Veterans Affairs Medical Center, Dayton, OH
| | | | - Kathryn M Hurren
- Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI
| | - Adam Edward Lang
- Department of Primary Care, McDonald Army Health Center, Fort Eustis, VA
| | | | - Lance Spacek
- Department of Veterans Affairs South Texas Healthcare System, San Antonio, TX
| | - Evan N Steil
- Medical Readiness Command-Europe, Sembach, Germany
| | - Sharon A Watts
- Office of Nursing Service, Department of Veterans Affairs Long Beach Healthcare System, Long Beach, CA
| | - Jane E Weinreb
- Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Leonard M Pogach
- Specialty Care Program Office, Department of Veterans Affairs, Washington, DC
| |
Collapse
|
2
|
Lee I, Mitsumoto H, Lee S, Kasarskis E, Rosenbaum M, Factor-Litvak P, Nieves JW. Higher Glycemic Index and Glycemic Load Diet Is Associated with Slower Disease Progression in Amyotrophic Lateral Sclerosis. Ann Neurol 2024; 95:217-229. [PMID: 37975189 PMCID: PMC10842093 DOI: 10.1002/ana.26825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE High-caloric diets may slow the progression of amyotrophic lateral sclerosis; however, key macronutrients have not been identified. We examined whether dietary macronutrients are associated with the rate of progression and length of survival among the prospective cohort study participants. METHODS Participants with a confirmed diagnosis of sporadic amyotrophic lateral sclerosis enrolled in the Multicenter Cohort Study of Oxidative Stress were included (n = 304). We evaluated baseline macronutrient intake assessed by food frequency questionnaire in relation to change in revised amyotrophic lateral sclerosis functional rating scale total-score, and tracheostomy-free survival using linear regression and Cox proportional hazard models. Baseline age, sex, disease duration, diagnostic certainty, body mass index, bulbar onset, revised amyotrophic lateral sclerosis functional rating scale total-score, and forced vital capacity were included as covariates. RESULTS Baseline higher glycemic index and load were associated with less decline of revised amyotrophic lateral sclerosis functional rating scale total score at 3-month follow-up (β = -0.13, 95% CI -0.2, -0.01, p = 0.03) and (β = -0.01, 95% CI -0.03, -0.0007, p = 0.04), respectively. Glycemic index second-quartile, third-quartile, and fourth-quartile groups were associated with less decline at 3 months by 1.9 (95% CI -3.3, -0.5, p = 0.008), 2.0 (95% CI -3.3, -0.6, p = 0.006), and 1.6 (95% CI -3.0, -0.2, p = 0.03) points compared with the first-quartile group; the glycemic load fourth-quartile group had 1.4 points less decline compared with the first-quartile group (95% CI -2.8, 0.1, p = 0.07). Higher glycemic index was associated with a trend toward longer tracheostomy-free survival (HR 0.97, 95% CI 0.93, 1.00, p = 0.07). INTERPRETATION Higher dietary glycemic index and load are associated with slower disease progression in amyotrophic lateral sclerosis. ANN NEUROL 2024;95:217-229.
Collapse
Affiliation(s)
- Ikjae Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Mitsumoto
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics and Psychiatry, Columbia University, New York, NY, USA
- Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Edward Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Michael Rosenbaum
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeri W Nieves
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
3
|
Cusi K, Isaacs S, Barb D, Basu R, Caprio S, Garvey WT, Kashyap S, Mechanick JI, Mouzaki M, Nadolsky K, Rinella ME, Vos MB, Younossi Z. American Association of Clinical Endocrinology Clinical Practice Guideline for the Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Primary Care and Endocrinology Clinical Settings: Co-Sponsored by the American Association for the Study of Liver Diseases (AASLD). Endocr Pract 2022; 28:528-562. [PMID: 35569886 DOI: 10.1016/j.eprac.2022.03.010] [Citation(s) in RCA: 377] [Impact Index Per Article: 188.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations regarding the diagnosis and management of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) to endocrinologists, primary care clinicians, health care professionals, and other stakeholders. METHODS The American Association of Clinical Endocrinology conducted literature searches for relevant articles published from January 1, 2010, to November 15, 2021. A task force of medical experts developed evidence-based guideline recommendations based on a review of clinical evidence, expertise, and informal consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RECOMMENDATION SUMMARY This guideline includes 34 evidence-based clinical practice recommendations for the diagnosis and management of persons with NAFLD and/or NASH and contains 385 citations that inform the evidence base. CONCLUSION NAFLD is a major public health problem that will only worsen in the future, as it is closely linked to the epidemics of obesity and type 2 diabetes mellitus. Given this link, endocrinologists and primary care physicians are in an ideal position to identify persons at risk on to prevent the development of cirrhosis and comorbidities. While no U.S. Food and Drug Administration-approved medications to treat NAFLD are currently available, management can include lifestyle changes that promote an energy deficit leading to weight loss; consideration of weight loss medications, particularly glucagon-like peptide-1 receptor agonists; and bariatric surgery, for persons who have obesity, as well as some diabetes medications, such as pioglitazone and glucagon-like peptide-1 receptor agonists, for those with type 2 diabetes mellitus and NASH. Management should also promote cardiometabolic health and reduce the increased cardiovascular risk associated with this complex disease.
Collapse
Affiliation(s)
- Kenneth Cusi
- Guideine and Algorithm Task Forces Co-Chair, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida
| | - Scott Isaacs
- Guideline and Algorithm Task Forces Co-Chair, Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia
| | - Diana Barb
- University of Florida, Gainesville, Florida
| | - Rita Basu
- Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sonia Caprio
- Yale University School of Medicine, New Haven, Connecticut
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jeffrey I Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Icahn School of Medicine at Mount Sinai
| | | | - Karl Nadolsky
- Michigan State University College of Human Medicine, Grand Rapids, Michigan
| | - Mary E Rinella
- AASLD Representative, University of Pritzker School of Medicine, Chicago, Illinois
| | - Miriam B Vos
- Center for Clinical and Translational Research, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Zobair Younossi
- AASLD Representative, Inova Medicine, Inova Health System, Falls Church, Virginia
| |
Collapse
|
4
|
Pioglitazone Reverses Markers of Islet Beta-Cell De-Differentiation in db/db Mice While Modulating Expression of Genes Controlling Inflammation and Browning in White Adipose Tissue from Insulin-Resistant Mice and Humans. Biomedicines 2021; 9:biomedicines9091189. [PMID: 34572374 PMCID: PMC8470788 DOI: 10.3390/biomedicines9091189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, insulin resistance, and type 2 diabetes contribute to increased morbidity and mortality in humans. The db/db mouse is an important mouse model that displays many key features of the human disease. Herein, we used the drug pioglitazone, a thiazolidinedione with insulin-sensitizing properties, to investigate blood glucose levels, indicators of islet β-cell health and maturity, and gene expression in adipose tissue. Oral administration of pioglitazone lowered blood glucose levels in db/db mice with a corresponding increase in respiratory quotient, which indicates improved whole-body carbohydrate utilization. In addition, white adipose tissue from db/db mice and from humans treated with pioglitazone showed increased expression of glycerol kinase. Both db/db mice and humans given pioglitazone displayed increased expression of UCP-1, a marker typically associated with brown adipose tissue. Moreover, pancreatic β-cells from db/db mice treated with pioglitazone had greater expression of insulin and Nkx6.1 as well as reduced abundance of the de-differentiation marker Aldh1a3. Collectively, these findings indicate that four weeks of pioglitazone therapy improved overall metabolic health in db/db mice. Our data are consistent with published reports of human subjects administered pioglitazone and with analysis of human adipose tissue taken from subjects treated with pioglitazone. In conclusion, the current study provides evidence that pioglitazone restores key markers of metabolic health and also showcases the utility of the db/db mouse to understand mechanisms associated with human metabolic disease and interventions that provide therapeutic benefit.
Collapse
|
5
|
Jonas DE, Crotty K, Yun JDY, Middleton JC, Feltner C, Taylor-Phillips S, Barclay C, Dotson A, Baker C, Balio CP, Voisin CE, Harris RP. Screening for Prediabetes and Type 2 Diabetes: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021; 326:744-760. [PMID: 34427595 DOI: 10.1001/jama.2021.10403] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Type 2 diabetes is common and is a leading cause of morbidity and disability. OBJECTIVE To review the evidence on screening for prediabetes and diabetes to inform the US Preventive Services Task Force (USPSTF). DATA SOURCES PubMed/MEDLINE, Cochrane Library, and trial registries through September 2019; references; and experts; literature surveillance through May 21, 2021. STUDY SELECTION English-language controlled studies evaluating screening or interventions for prediabetes or diabetes that was screen detected or recently diagnosed. DATA EXTRACTION AND SYNTHESIS Dual review of abstracts, full-text articles, and study quality; qualitative synthesis of findings; meta-analyses conducted when at least 3 similar studies were available. MAIN OUTCOMES AND MEASURES Mortality, cardiovascular morbidity, diabetes-related morbidity, development of diabetes, quality of life, and harms. RESULTS The review included 89 publications (N = 68 882). Two randomized clinical trials (RCTs) (25 120 participants) found no significant difference between screening and control groups for all-cause or cause-specific mortality at 10 years. For harms (eg, anxiety or worry), the trials reported no significant differences between screening and control groups. For recently diagnosed (not screen-detected) diabetes, 5 RCTs (5138 participants) were included. In the UK Prospective Diabetes Study, health outcomes were improved with intensive glucose control with sulfonylureas or insulin. For example, for all-cause mortality the relative risk (RR) was 0.87 (95% CI, 0.79 to 0.96) over 20 years (10-year posttrial assessment). For overweight persons, intensive glucose control with metformin improved health outcomes at the 10-year follow-up (eg, all-cause mortality: RR, 0.64 [95% CI, 0.45 to 0.91]), and benefits were maintained longer term. Lifestyle interventions (most involving >360 minutes) for obese or overweight persons with prediabetes were associated with reductions in the incidence of diabetes (23 RCTs; pooled RR, 0.78 [95% CI, 0.69 to 0.88]). Lifestyle interventions were also associated with improved intermediate outcomes, such as reduced weight, body mass index, systolic blood pressure, and diastolic blood pressure (pooled weighted mean difference, -1.7 mm Hg [95% CI, -2.6 to -0.8] and -1.2 mm Hg [95% CI, -2.0 to -0.4], respectively). Metformin was associated with a significant reduction in diabetes incidence (pooled RR, 0.73 [95% CI, 0.64 to 0.83]) and reduction in weight and body mass index. CONCLUSIONS AND RELEVANCE Trials of screening for diabetes found no significant mortality benefit but had insufficient data to assess other health outcomes; evidence on harms of screening was limited. For persons with recently diagnosed (not screen-detected) diabetes, interventions improved health outcomes; for obese or overweight persons with prediabetes, interventions were associated with reduced incidence of diabetes and improvement in other intermediate outcomes.
Collapse
Affiliation(s)
- Daniel E Jonas
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Department of Internal Medicine, The Ohio State University, Columbus
| | - Karen Crotty
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- RTI International, Research Triangle Park, North Carolina
| | - Jonathan D Y Yun
- Thayer Internal Medicine, MaineGeneral Health, Waterville, Maine
| | - Jennifer Cook Middleton
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
| | - Cynthia Feltner
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Sian Taylor-Phillips
- Warwick Medical School, University of Warwick, Coventry, West Midlands, United Kingdom
| | - Colleen Barclay
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Department of Internal Medicine, The Ohio State University, Columbus
| | - Andrea Dotson
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
| | - Claire Baker
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
| | - Casey P Balio
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
| | - Christiane E Voisin
- RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center, Chapel Hill
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
| | - Russell P Harris
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill
- Department of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
6
|
da Silva Rosa SC, Liu M, Sweeney G. Adiponectin Synthesis, Secretion and Extravasation from Circulation to Interstitial Space. Physiology (Bethesda) 2021; 36:134-149. [PMID: 33904786 PMCID: PMC8461789 DOI: 10.1152/physiol.00031.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin, an adipokine that circulates as multiple multimeric complexes at high levels in serum, has antidiabetic, anti-inflammatory, antiatherogenic, and cardioprotective properties. Understanding the mechanisms regulating adiponectin's physiological effects is likely to provide critical insight into the development of adiponectin-based therapeutics to treat various metabolic-related diseases. In this review, we summarize our current understanding on adiponectin action in its various target tissues and in cellular models. We also focus on recent advances in two particular regulatory aspects; namely, the regulation of adiponectin gene expression, multimerization, and secretion, as well as extravasation of circulating adiponectin to the interstitial space and its degradation. Finally, we discuss some potential therapeutic approaches using adiponectin as a target and the current challenges facing adiponectin-based therapeutic interventions.
Collapse
Affiliation(s)
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Ipsen EØ, Madsen KS, Chi Y, Pedersen-Bjergaard U, Richter B, Metzendorf MI, Hemmingsen B. Pioglitazone for prevention or delay of type 2 diabetes mellitus and its associated complications in people at risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2020; 11:CD013516. [PMID: 33210751 PMCID: PMC8092670 DOI: 10.1002/14651858.cd013516.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The term prediabetes is used to describe a population with an elevated risk of developing type 2 diabetes mellitus (T2DM). With projections of an increase in the incidence of T2DM, prevention or delay of the disease and its complications is paramount. It is currently unknown whether pioglitazone is beneficial in the treatment of people with increased risk of developing T2DM. OBJECTIVES To assess the effects of pioglitazone for prevention or delay of T2DM and its associated complications in people at risk of developing T2DM. SEARCH METHODS We searched CENTRAL, MEDLINE, Chinese databases, ICTRP Search Portal and ClinicalTrials.gov. We did not apply any language restrictions. Further, we investigated the reference lists of all included studies and reviews. We tried to contact all study authors. The date of the last search of databases was November 2019 (March 2020 for Chinese databases). SELECTION CRITERIA We included randomised controlled trials (RCTs) with a minimum duration of 24 weeks, and participants diagnosed with intermediate hyperglycaemia with no concomitant diseases, comparing pioglitazone as monotherapy or part of dual therapy with other glucose-lowering drugs, behaviour-changing interventions, placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently screened abstracts, read full-text articles and records, assessed risk of bias and extracted data. We performed meta-analyses with a random-effects model and calculated risk ratios (RRs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, with 95% confidence intervals (CIs) for effect estimates. We evaluated the certainty of the evidence with the GRADE. MAIN RESULTS We included 27 studies with a total of 4186 randomised participants. The size of individual studies ranged between 43 and 605 participants and the duration varied between 6 and 36 months. We judged none of the included studies as having low risk of bias across all 'Risk of bias' domains. Most studies identified people at increased risk of T2DM by impaired fasting glucose or impaired glucose tolerance (IGT), or both. Our main outcome measures were all-cause mortality, incidence of T2DM, serious adverse events (SAEs), cardiovascular mortality, nonfatal myocardial infarction or stroke (NMI/S), health-related quality of life (QoL) and socioeconomic effects. The following comparisons mostly reported only a fraction of our main outcome set. Three studies compared pioglitazone with metformin. They did not report all-cause and cardiovascular mortality, NMI/S, QoL or socioeconomic effects. Incidence of T2DM was 9/168 participants in the pioglitazone groups versus 9/163 participants in the metformin groups (RR 0.98, 95% CI 0.40 to 2.38; P = 0.96; 3 studies, 331 participants; low-certainty evidence). No SAEs were reported in two studies (201 participants; low-certainty evidence). One study compared pioglitazone with acarbose. Incidence of T2DM was 1/50 participants in the pioglitazone group versus 2/46 participants in the acarbose group (very low-certainty evidence). No participant experienced a SAE (very low-certainty evidence).One study compared pioglitazone with repaglinide. Incidence of T2DM was 2/48 participants in the pioglitazone group versus 1/48 participants in the repaglinide group (low-certainty evidence). No participant experienced a SAE (low-certainty evidence). One study compared pioglitazone with a personalised diet and exercise consultation. All-cause and cardiovascular mortality, NMI/S, QoL or socioeconomic effects were not reported. Incidence of T2DM was 2/48 participants in the pioglitazone group versus 5/48 participants in the diet and exercise consultation group (low-certainty evidence). No participant experienced a SAE (low-certainty evidence). Six studies compared pioglitazone with placebo. No study reported on QoL or socioeconomic effects. All-cause mortality was 5/577 participants the in the pioglitazone groups versus 2/579 participants in the placebo groups (Peto odds ratio 2.38, 95% CI 0.54 to 10.50; P = 0.25; 4 studies, 1156 participants; very low-certainty evidence). Incidence of T2DM was 80/700 participants in the pioglitazone groups versus 131/695 participants in the placebo groups (RR 0.40, 95% CI 0.17 to 0.95; P = 0.04; 6 studies, 1395 participants; low-certainty evidence). There were 3/93 participants with SAEs in the pioglitazone groups versus 1/94 participants in the placebo groups (RR 3.00, 95% CI 0.32 to 28.22; P = 0.34; 2 studies, 187 participants; very low-certainty evidence). However, the largest study for this comparison did not distinguish between serious and non-serious adverse events. This study reported that 121/303 (39.9%) participants in the pioglitazone group versus 151/299 (50.5%) participants in the placebo group experienced an adverse event (P = 0.03). One study observed cardiovascular mortality in 2/181 participants in the pioglitazone group versus 0/186 participants in the placebo group (RR 5.14, 95% CI 0.25 to 106.28; P = 0.29; very low-certainty evidence). One study observed NMI in 2/303 participants in the pioglitazone group versus 1/299 participants in the placebo group (RR 1.97: 95% CI 0.18 to 21.65; P = 0.58; very low-certainty evidence). Twenty-one studies compared pioglitazone with no intervention. No study reported on cardiovascular mortality, NMI/S, QoL or socioeconomic effects. All-cause mortality was 11/441 participants in the pioglitazone groups versus 12/425 participants in the no-intervention groups (RR 0.85, 95% CI 0.38 to 1.91; P = 0.70; 3 studies, 866 participants; very low-certainty evidence). Incidence of T2DM was 60/1034 participants in the pioglitazone groups versus 197/1019 participants in the no-intervention groups (RR 0.31, 95% CI 0.23 to 0.40; P < 0.001; 16 studies, 2053 participants; moderate-certainty evidence). Studies reported SAEs in 16/610 participants in the pioglitazone groups versus 21/601 participants in the no-intervention groups (RR 0.71, 95% CI 0.38 to 1.32; P = 0.28; 7 studies, 1211 participants; low-certainty evidence). We identified two ongoing studies, comparing pioglitazone with placebo and with other glucose-lowering drugs. These studies, with 2694 participants. may contribute evidence to future updates of this review. AUTHORS' CONCLUSIONS Pioglitazone reduced or delayed the development of T2DM in people at increased risk of T2DM compared with placebo (low-certainty evidence) and compared with no intervention (moderate-certainty evidence). It is unclear whether the effect of pioglitazone is sustained once discontinued. Pioglitazone compared with metformin neither showed advantage nor disadvantage regarding the development of T2DM in people at increased risk (low-certainty evidence). The data and reporting of all-cause mortality, SAEs, micro- and macrovascular complications were generally sparse. None of the included studies reported on QoL or socioeconomic effects.
Collapse
Affiliation(s)
- Emil Ørskov Ipsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper S Madsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Chi
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ulrik Pedersen-Bjergaard
- Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital, Hillerød, Denmark
| | - Bernd Richter
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria-Inti Metzendorf
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bianca Hemmingsen
- Cochrane Metabolic and Endocrine Disorders Group, Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Postprandial Reactive Hypoglycemia. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2019; 53:215-220. [PMID: 32377086 PMCID: PMC7192270 DOI: 10.14744/semb.2019.59455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
Reactive hypoglycemia (RH) is the condition of postprandially hypoglycemia occurring 2-5 hours after food intake. RH is clinically seen in three different forms as follows: idiopathic RH (at 180 min), alimentary (within 120 min), and late RH (at 240–300 min). When the first-phase insulin response decreases, firstly, blood glucose starts to rise after the meal. This leads to late but excessive secretion of the second-phase insulin secretion. Thus, late reactive hypoglycemia occurs. Elevated insulin levels also cause down-regulation of the insulin post-receptor on the muscle and fat cells, thus decreasing insulin sensitivity. The cause of the increase in insulin sensitivity in IRH at 3 h is not completely clear. However, there is a decrease in insulin sensitivity in late reactive hypoglycaemia at 4 or 5 hours. Thus, patients with hypoglycemia at 4 or 5 h who have a family history of diabetes and obesity may be more susceptible to diabetes than patients with hypoglycemia at 3 h. We believe that some cases with normal glucose tolerance in OGTT should be considered as prediabetes at <55 or 60 mg/dl after 4-5 hours after OGTT. Metformin and AGI therapy may be recommended if there is late RH with IFG. Also Metformin, AGİ, TZD, DPP-IVInhibitors, GLP1RA therapy may be recommended if there is late RH with IGT. As a result, postprandial RH (<55 or 60 mg/dl), especially after 4 hours may predict diabetes. Therefore, people with RH along with weight gain and with diabetes history in the family will benefit from a lifestyle modification as well as the appropriate antidiabetic approach in the prevention of diabetes.
Collapse
|
9
|
Liu Y, Vu V, Sweeney G. Examining the Potential of Developing and Implementing Use of Adiponectin-Targeted Therapeutics for Metabolic and Cardiovascular Diseases. Front Endocrinol (Lausanne) 2019; 10:842. [PMID: 31920962 PMCID: PMC6918867 DOI: 10.3389/fendo.2019.00842] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic diseases encompass those affecting the heart and vasculature as well as other metabolic problems, such as insulin resistance, diabetes, and non-alcoholic fatty liver disease. These diseases tend to have common risk factors, one of which is impaired adiponectin action. This may be due to reduced bioavailability of the hormone or resistance to its effects on target tissues. A strong negative correlation between adiponectin levels and cardiometabolic diseases has been well-documented and research shown that adiponectin has cardioprotective, insulin sensitizing and direct beneficial metabolic effects. Thus, therapeutic approaches to enhance adiponectin action are widely considered to be desirable. The complexity of adiponectin structure and function has so far made progress in this area less than ideal. In this article we will review the effects and mechanism of action of adiponectin on cardiometabolic tissues, identify scenarios where enhancing adiponectin action would be of clinical value and finally discuss approaches via which this can be achieved.
Collapse
Affiliation(s)
- Ying Liu
- Metabolic Disease Research Division, iCarbonX Co. Ltd., Shenzhen, China
- *Correspondence: Ying Liu
| | - Vivian Vu
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
- Gary Sweeney
| |
Collapse
|
10
|
Qian X, Wang H, Yang G, Gao Z, Luo Y, Dong A, Zhang F, Xu M, Liu S, Yang X, Chen Y, Li G. Pioglitazone Improved Insulin Sensitivity and First Phase Insulin Secretion Among Obese and Lean People with Diabetes: A Multicenter Clamp Study. Diabetes Ther 2018; 9. [PMID: 29536426 PMCID: PMC6104278 DOI: 10.1007/s13300-018-0401-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION To investigate the effects of pioglitazone (PIO) on insulin resistance and first phase insulin secretion among obese and lean Chinese people with type 2 diabetes mellitus (T2DM). METHODS Sixty-eight drug-naïve patients with T2DM were treated with PIO for 16 weeks. Before and after the treatment, insulin sensitivity was evaluated by the euglycemic hyperinsulinemic clamp test. Plasma insulin levels at 0, 3, 5, 7, and 10 min during intravenous glucose tolerance test were determined to calculate the first phase insulin secretion and pancreatic β-cell function. Circulating adiponectin levels were quantified. RESULTS In both the lean and the obese patients with T2DM, the reduction of HbA1c following the PIO treatment was more than 1% (P < 0.001) and glucose infusion rate, acute insulin response, glucose disposal index, and β-cell glucose sensitivity increased significantly (P < 0.001). A multiple linear regression analysis showed that the improvements of first phase insulin secretion and insulin sensitivity were independently associated with the changes of HbA1c, but the change of first phase insulin secretion exhibited a higher correlation coefficient (R2 = 0.20, P = 0.001) than the change of insulin sensitivity did (R2 = 0.07, P = 0.040). The PIO treatment led to a significant increase in adiponectin levels only in the obese group (P < 0.05). CONCLUSION A 16-week treatment of PIO significantly increased insulin sensitivity and β-cell function in the lean group as well as in the obese group among Chinese T2DM patients, demonstrating that both lean and obese diabetic adults would profit from PIO. TRIAL REGISTRATION The ChiCTR registry number is ChiCTR-OPC-17011571. FUNDING Takeda Pharmaceutical Co. Ltd. and Pfizer Pharmaceutical Co. Ltd.
Collapse
Affiliation(s)
- Xin Qian
- Endocrinology and Cardiovascular Diseases Center, Fuwai Hospital, Chinese Academy of Medical Sciences, No. 167 North Lishi Road, Xicheng District, Beijing, China
| | - Hui Wang
- Endocrinology and Cardiovascular Diseases Center, Fuwai Hospital, Chinese Academy of Medical Sciences, No. 167 North Lishi Road, Xicheng District, Beijing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, No. 76 Linjiang Road, Chongqing, China
| | - Zhengnan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital, No. 42 Xuegong Street, Shahekou District, Dalian, China
| | - Yong Luo
- Department of Endocrinology, Chongqing Three Gorges Central Hospital, No. 165 Xincheng Road, Wanzhou District, Chongqing, China
| | - Aimei Dong
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Road, Xicheng District, Beijing, China
| | - Fang Zhang
- Department of Endocrinology, Peking University Shenzhen Hospital, No. 1120 Lianhua Road, Futian District, Shenzhen, China
| | - Mingtong Xu
- Department of Endocrinology, Second Affiliated Hospital of Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, China
| | - Shiping Liu
- Department of Endocrinology, The Second Xiangya Hospital of Central South University, No. 139 Renmin Middle Road, Changsha, Hunan, China
| | - Xin Yang
- Department of Information Systems, Statistics, and Management Science, Culverhouse College of Commerce and Business Administration, The University of Alabama, Tuscaloosa, AL, USA
| | - Yanyan Chen
- Endocrinology and Cardiovascular Diseases Center, Fuwai Hospital, Chinese Academy of Medical Sciences, No. 167 North Lishi Road, Xicheng District, Beijing, China
| | - Guangwei Li
- Endocrinology and Cardiovascular Diseases Center, Fuwai Hospital, Chinese Academy of Medical Sciences, No. 167 North Lishi Road, Xicheng District, Beijing, China.
| |
Collapse
|