1
|
Peipei W, Yu D, Xiaoyan L, Yunxia L, Liuming L, Tongbin C, Shaoping L. Effects of a novel regimen of repetitive transcranial magnetic stimulation (rTMS) on neural remodeling and motor function in adult male mice with ischemic stroke. J Neurosci Res 2024; 102:e25358. [PMID: 38859672 DOI: 10.1002/jnr.25358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/03/2024] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
Neuroinflammation caused by excessive microglial activation plays a key role in the pathogenesis of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulatory technique that has recently been reported to regulate microglial functions and exert anti-inflammatory effects. The intermittent burst stimulation (iTBS) regimen in rTMS improves neuronal excitability. However, whether iTBS exerts its anti-inflammatory effects by stimulating neurons and thereby modulating microglial polarization remains unclear. Motor function was assessed after 1 week of rTMS (iTBS regimen) treatment in adult male mice with occlusion/reperfusion of the middle cerebral artery (MCAO/r) injury. We also investigated the molecular biological alterations associated with microglial polarization using a cell proliferation assay, multiplex cytokine bioassays, and immunofluorescence staining. iTBS regimen can improve balance and motor coordination function, increase spontaneous movement, and improve walking function in mice with early cerebral ischemia injury. Expression levels of IL-1β, TNF-α, and IL-10 increased significantly in mice with MCAO injury. Especially, rTMS significantly increased the number of proliferating cells in the infarcted cortex. The fluorescence intensity of MAP2 in the peri-infarct area of MCAO injured mice was low, but the signal was broader. Compared with MCAO group, the fluorescence intensity of MAP2 in rTMS group was significantly increased. rTMS inhibited pro-inflammatory M1 activation (Iba1+/CD86+) and improved anti-inflammatory M2 activation (Iba1+/CD206+) in the peri-infarct zone, thus significantly changing the phenotypic ratio M1/M2. rTMS improves motor dysfunction and neuroinflammation after cerebral I/R injury in mice by regulating microglial polarization.
Collapse
Affiliation(s)
- Wang Peipei
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Deng Yu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Xiaoyan
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Liu Yunxia
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Liang Liuming
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Cheng Tongbin
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| | - Lv Shaoping
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong, China
| |
Collapse
|
2
|
Miller LR, Bickel MA, Vance ML, Vaden H, Nagykaldi D, Nyul-Toth A, Bullen EC, Gautam T, Tarantini S, Yabluchanskiy A, Kiss T, Ungvari Z, Conley SM. Vascular smooth muscle cell-specific Igf1r deficiency exacerbates the development of hypertension-induced cerebral microhemorrhages and gait defects. GeroScience 2024; 46:3481-3501. [PMID: 38388918 PMCID: PMC11009188 DOI: 10.1007/s11357-024-01090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.
Collapse
Affiliation(s)
- Lauren R Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
- Currently at: Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Marisa A Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Michaela L Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Elizabeth C Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, BMSB 553, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Nichols E, Rabin JS. Declining motor and cognitive functioning and the role of gait in dementia. THE LANCET. HEALTHY LONGEVITY 2024; 5:e308-e309. [PMID: 38582096 DOI: 10.1016/s2666-7568(24)00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Affiliation(s)
- Emma Nichols
- Center for Economic and Social Research and Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Jennifer S Rabin
- Dr Sandra Black Center for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
4
|
Liu S, Wu Q, Wang L, Xing C, Guo J, Li B, Ma H, Zhong H, Zhou M, Zhu S, Zhu R, Ning G. Coordination function index: A novel indicator for assessing hindlimb locomotor recovery in spinal cord injury rats based on catwalk gait parameters. Behav Brain Res 2024; 459:114765. [PMID: 37992973 DOI: 10.1016/j.bbr.2023.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In preclinical studies of spinal cord injury (SCI), behavioral assessments are crucial for evaluating treatment effectiveness. Commonly used methods include Basso, Beattie, Bresnahan (BBB) score and the Louisville swim scale (LSS), relying on subjective observations. The CatWalk automated gait analysis system is also widely used in SCI studies, providing extensive gait parameters from footprints. However, these parameters are often used independently or combined simply without utilizing the vast amount of data provided by CatWalk. Therefore, it is necessary to develop a novel approach encompassing multiple CatWalk parameters for a comprehensive and objective assessment of locomotor function. In this work, we screened 208 CatWalk XT gait parameters and identified 38 suitable for assessing hindlimb motor function recovery in a rat thoracic contusion SCI model. Exploratory factor analysis was used to reveal structural relationships among these parameters. Weighted scores for Coordination effectively differentiated hindlimb motor function levels, termed as the Coordinated Function Index (CFI). CFI showed high reliability, exhibiting high correlations with BBB scores, LSS, and T2WI lesion area. Finally, we simplified CFI based on factor loadings and correlation analysis, obtaining a streamlined version with reliable assessment efficacy. In conclusion, we developed a systematic assessment indicator utilizing multiple CatWalk parameters to objectively evaluate hindlimb motor function recovery in rats after thoracic contusion SCI.
Collapse
Affiliation(s)
- Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Junrui Guo
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Baicao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Zhong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mi Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
5
|
Faakye J, Nyúl-Tóth Á, Muranyi M, Gulej R, Csik B, Shanmugarama S, Tarantini S, Negri S, Prodan C, Mukli P, Yabluchanskiy A, Conley S, Toth P, Csiszar A, Ungvari Z. Preventing spontaneous cerebral microhemorrhages in aging mice: a novel approach targeting cellular senescence with ABT263/navitoclax. GeroScience 2024; 46:21-37. [PMID: 38044400 PMCID: PMC10828142 DOI: 10.1007/s11357-023-01024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.
Collapse
Affiliation(s)
- Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Mihaly Muranyi
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| |
Collapse
|
6
|
Bogachev M, Sinitca A, Grigarevichius K, Pyko N, Lyanova A, Tsygankova M, Davletshin E, Petrov K, Ageeva T, Pyko S, Kaplun D, Kayumov A, Mukhamedshina Y. Video-based marker-free tracking and multi-scale analysis of mouse locomotor activity and behavioral aspects in an open field arena: A perspective approach to the quantification of complex gait disturbances associated with Alzheimer's disease. Front Neuroinform 2023; 17:1101112. [PMID: 36817970 PMCID: PMC9932053 DOI: 10.3389/fninf.2023.1101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Complex gait disturbances represent one of the prominent manifestations of various neurophysiological conditions, including widespread neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Therefore, instrumental measurement techniques and automatic computerized analysis appears essential for the differential diagnostics, as well as for the assessment of treatment effectiveness from experimental animal models to clinical settings. Methods Here we present a marker-free instrumental approach to the analysis of gait disturbances in animal models. Our approach is based on the analysis of video recordings obtained with a camera placed underneath an open field arena with transparent floor using the DeeperCut algorithm capable of online tracking of individual animal body parts, such as the snout, the paws and the tail. The extracted trajectories of animal body parts are next analyzed using an original computerized methodology that relies upon a generalized scalable model based on fractional Brownian motion with parameters identified by detrended partial cross-correlation analysis. Results We have shown that in a mouse model representative movement patterns are characterized by two asymptotic regimes characterized by integrated 1/f noise at small scales and nearly random displacements at large scales separated by a single crossover. More detailed analysis of gait disturbances revealed that the detrended cross-correlations between the movements of the snout, paws and tail relative to the animal body midpoint exhibit statistically significant discrepancies in the Alzheimer's disease mouse model compared to the control group at scales around the location of the crossover. Discussion We expect that the proposed approach, due to its universality, robustness and clear physical interpretation, is a promising direction for the design of applied analysis tools for the diagnostics of various gait disturbances and behavioral aspects in animal models. We further believe that the suggested mathematical models could be relevant as a complementary tool in clinical diagnostics of various neurophysiological conditions associated with movement disorders.
Collapse
Affiliation(s)
- Mikhail Bogachev
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aleksandr Sinitca
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Konstantin Grigarevichius
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Nikita Pyko
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Asya Lyanova
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Margarita Tsygankova
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Eldar Davletshin
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Konstantin Petrov
- FRC Kazan Scientific Center of RAS, Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russia
| | - Tatyana Ageeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana Pyko
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Dmitrii Kaplun
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
| | - Airat Kayumov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
7
|
Noureddine S, Saccon T, Rudeski-Rohr T, Gesing A, Mason JB, Schneider A, Dhabhi J, Puig KL, Rakoczy S, Brown-Borg HM, Masternak MM. GH deficiency confers protective advantages against Alzheimer's disease through rescued miRNA expression profile in APP/PS1 mice. GeroScience 2022; 44:2885-2893. [PMID: 35900661 PMCID: PMC9768053 DOI: 10.1007/s11357-022-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, affecting approximately 6.5 million Americans age 65 or older. AD is characterized by increased cognitive impairment and treatment options available provide minimal disease attenuation. Additionally, diagnostic methods for AD are not conclusive with definitive diagnoses requiring postmortem brain evaluations. Therefore, miRNAs, a class of small, non-coding RNAs, have garnered attention for their ability to regulate a variety of mRNAs and their potential to serve as both therapeutic targets and biomarkers of AD. Several miRNAs have already been implicated with AD and have been found to directly target genes associated with AD pathology. The APP/PS1 mice is an AD model that expresses the human mutated form of the amyloid precursor protein (APP) and presenilin-1 (PS1) genes. In a previous study, it was identified that crossing long-living growth hormone (GH)-deficient Ames dwarf (df/df) mice with APP/PS1 mice provided protection from AD through a reduction in IGF-1, amyloid-β (Aβ) deposition, and gliosis. Hence, we hypothesized that changes in the expression of miRNAs associated with AD mediated such benefits. To test this hypothesis, we sequenced miRNAs in hippocampi of df/df, wild type (+ / +), df/ + /APP/PS1 (phenotypically normal APP/PS1), and df/df/APP/PS1 mice. Results of this study demonstrated significantly upregulated and downregulated miRNAs between df/df/APP/PS1 and df/ + /APP/PS1 mice that suggest the df/df mutation provides protection from AD progression. Additionally, changes in miRNA expression with age were identified in both df/df and wild-type mice as well as df/df/APP/PS1 and APP/PS1 mice, with predictive functional roles in the Pi3k-AKT/mTOR/FOXO pathways potentially contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Sarah Noureddine
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Tatiana Saccon
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Trina Rudeski-Rohr
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Lodz, Poland
| | - Jeffrey B Mason
- School of Veterinary Medicine, Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, 84322, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Joseph Dhabhi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, USA
| | - Kendra L Puig
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
8
|
Mukli P, Detwiler S, Owens CD, Csipo T, Lipecz A, Pinto CB, Tarantini S, Nyul-Toth A, Balasubramanian P, Hoffmeister JR, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Gait variability predicts cognitive impairment in older adults with subclinical cerebral small vessel disease. Front Aging Neurosci 2022; 14:1052451. [PMID: 36466602 PMCID: PMC9716182 DOI: 10.3389/fnagi.2022.1052451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Advanced methods of gait research, including approaches to quantify variability, and orderliness/regularity/predictability, are increasingly used to identify patients at risk for the development of cognitive impairment. Cerebral small vessel disease (CSVD) is highly prevalent in older adults and is known to contribute to the development of vascular cognitive impairment and dementia (VCID). Studies in preclinical models demonstrate that subclinical alterations precede CSVD-related cognitive impairment in gait coordination. In humans, CSVD also associates with gait abnormalities. The present study was designed to test the hypothesis that increased gait variability and gait asymmetry predict a decline in cognitive performance in older adults with CSVD. Methods To test this hypothesis, we compared cognitive performance and gait function in patients with CSVD (age: 69.8 ± 5.3 years; n = 11) and age- and sex-matched control participants (age: 70.7 ± 5.8 years; n = 11). Based on imaging findings, patients with CSVD were identified [presence of white matter hyperintensities plus silent brain infarcts and/or microhemorrhages on magnetic resonance imaging (MRI) assessment]. Cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Gait parameters were measured during the single and dual tasks, during which participants, in addition to the motor task, completed a series of mental arithmetic calculations. Spatial and temporal parameters of gait variability, symmetry, and permutation entropy were determined using a pressure-sensitive gait mat during single and dual cognitive task conditions. Results Patients with CSVD exhibited lower performance in a visual learning test (p = 0.030) and in a sustained attention test (p = 0.007). CSVD also affected step time variability (p = 0.009) and step length variability (p = 0.017). Step lengths of CSVD participants were more asymmetric (p = 0.043) than that of controls, while the two groups were statistically similar regarding step time symmetry and entropy of step time and length. Gait variability was inversely associated with sustained attention, especially among CSVD patients, and this relationship was significantly different between the two groups. The association of sustained attention with gait symmetry was also significantly different between the two groups. Discussion Our findings provide additional evidence in support of the concept that increased gait variability and asymmetry may predict cognitive impairment in older adults with CSVD.
Collapse
Affiliation(s)
- Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Cameron D. Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tamas Csipo
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Agnes Lipecz
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adam Nyul-Toth
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jordan R. Hoffmeister
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Angelia C. Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Calin I. Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, United States,Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Andriy Yabluchanskiy,
| |
Collapse
|
9
|
Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res 2022; 10:58. [PMID: 36031625 PMCID: PMC9420732 DOI: 10.1038/s41413-022-00229-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that coordinate the shift from joint homeostasis to osteoarthritis (OA) remain unknown. No pharmacological intervention can currently prevent the progression of osteoarthritis. Accumulating evidence has shown that subchondral bone deterioration is a primary trigger for overlying cartilage degeneration. We previously found that H-type vessels modulate aberrant subchondral bone formation during the pathogenesis of OA. However, the mechanism responsible for the elevation of H-type vessels in OA is still unclear. Here, we found that PDGFR-β expression, predominantly in the CD31hiEmcnhi endothelium, was substantially elevated in subchondral bones from OA patients and rodent OA models. A mouse model of OA with deletion of PDGFR-β in endothelial cells (ECs) exhibited fewer H-type vessels, ameliorated subchondral bone deterioration and alleviated overlying cartilage degeneration. Endothelial PDGFR-β promotes angiogenesis through the formation of the PDGFR-β/talin1/FAK complex. Notably, endothelium-specific inhibition of PDGFR-β by local injection of AAV9 in subchondral bone effectively attenuated the pathogenesis of OA compared with that of the vehicle-treated controls. Based on the results from this study, targeting PDGFR-β is a novel and promising approach for the prevention or early treatment of OA.
Collapse
|
10
|
Ng TKS, Heyn PC, Tagawa A, Coughlan C, Carollo JJ. Associations of Circulating Insulin-Growth Factor-1 With Cognitive Functions and Quality of Life Domains in Ambulatory Young Adults With Cerebral Palsy: A Pilot Study. Front Neurol 2022; 13:748015. [PMID: 35832183 PMCID: PMC9271561 DOI: 10.3389/fneur.2022.748015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Adults with cerebral palsy (CP) often have impaired cognitive functions. CP also has deteriorations in multiple quality-of-life (QoL) domains. The bio-psycho-social health psychology model posits that biological factor interacts with social and psychological functions. However, the biological determinant of psycho-social and functional outcomes in CP has been scarcely examined. Circulating Insulin-like growth factor-1 (IGF-1) is associated with cognitive deficits in older adults, we thus aimed to examine the associations of circulating IGF-1 with: (1) objectively measured cognitive functions, (2) self-reported cognitive functions, and (3) QoL measures in adults diagnosed with CP. Methods Seventy-two adults with CP and varying degrees of cognitive functions were recruited from an accredited clinical motion analysis laboratory at a regional Children's Hospital. Circulating IGF-1 was measured using post-fasting serum. The Wechsler Adult Intelligence Scale (WAIS) tests were administered to assess multiple cognitive functions, whereas the Patient-Reported Outcomes Measurement Information System (PROMIS) was used to measure multiple domains of self-reported health, including cognitive complaints and eight QoL domains. Results Sixty-eight participants had complete data [mean age = 25 (SD = 5.3), female = 52.8%]. Controlling for covariates, circulating IGF-1 was associated with multiple cognitive domains, including positively with declarative memory and executive function and inversely with visual-spatial and motor skills, and processing speed, while no association with subjective memory complaint was detected. Circulating IGF-1 was also inversely associated with four QoL domains, including depressive symptoms, executive function, physical function, and social roles and activities. Conclusions In CP, circulating IGF-1 might be a useful biological determinant of objective cognitive functions and several quality-of-life domains commonly impaired in CP.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Edson College of Nursing and Health Innovation, Arizona State University, Tempe, AZ, United States
- *Correspondence: Ted Kheng Siang Ng
| | - Patricia C. Heyn
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
| | - Alex Tagawa
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
| | - Christina Coughlan
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
- University of Colorado Alzheimer's and Cognition Center, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James J. Carollo
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Center for Gait and Movement Analysis (CGMA), Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
11
|
Rivastigmine Reverses the Decrease in Synapsin and Memory Caused by Homocysteine: Is There Relation to Inflammation? Mol Neurobiol 2022; 59:4517-4534. [PMID: 35578101 DOI: 10.1007/s12035-022-02871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
Elevated levels of homocysteine (Hcy) in the blood, called hyperhomocysteinemia (HHcy), is a prevalent risk factor for it has been shown that Hcy induces oxidative stress and increases microglial activation and neuroinflammation, as well as causes cognitive impairment, which have been linked to the neurodegenerative process. This study aimed to evaluate the effect of mild hyperhomocysteinemia with or without ibuprofen and rivastigmine treatments on the behavior and neurochemical parameters in male rats. The chronic mild HHcy model was chemically induced in Wistar rats by subcutaneous administration of Hcy (4055 mg/kg body weight) twice daily for 30 days. Ibuprofen (40 mg/kg) and rivastigmine (0.5 mg/kg) were administered intraperitoneally once daily. Motor damage (open field, balance beam, rotarod, and vertical pole test), cognitive deficits (Y-maze), neurochemical parameters (oxidative status/antioxidant enzymatic defenses, presynaptic protein synapsin 1, inflammatory profile parameters, calcium binding adapter molecule 1 (Iba1), iNOS gene expression), and cholinergic anti-inflammatory pathway were investigated. Results showed that mild HHcy caused cognitive deficits in working memory, and impaired motor coordination reduced the amount of synapsin 1 protein, altered the neuroinflammatory picture, and caused changes in the activity of catalase and acetylcholinesterase enzymes. Both rivastigmine and ibuprofen treatments were able to mitigate this damage caused by mild HHcy. Together, these neurochemical changes may be associated with the mechanisms by which Hcy has been linked to a risk factor for AD. Treatments with rivastigmine and ibuprofen can effectively reduce the damage caused by increased Hcy levels.
Collapse
|
12
|
Middei S. Neuroimaging Applications for Diagnosis and Therapy of Pathologies in the Central and Peripheral Nervous System. Brain Sci 2022; 12:brainsci12020207. [PMID: 35203970 PMCID: PMC8870331 DOI: 10.3390/brainsci12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Silvia Middei
- Institute of Biochemistry and Cell Biology, National Research Council, Via E. Ramarini 32, 00015 Monterotondo, Italy;
- European Brain Research Institute, Viale Regina Elena 295, 00161 Rome, Italy
| |
Collapse
|
13
|
Castillo-Mariqueo L, Giménez-Llort L. Kyphosis and bizarre patterns impair spontaneous gait performance in end-of-life mice with Alzheimer's disease pathology while gait is preserved in normal aging. Neurosci Lett 2021; 767:136280. [PMID: 34601039 DOI: 10.1016/j.neulet.2021.136280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
The shorter life spans of mice provide an exceptional experimental gerontology scenario. We previously described increased bizarre (disruptive) behaviors in the 6-month-old 3xTg-AD mice model for Alzheimer's disease (AD), compared to C57BL/6J wildtype (NTg), when confronting new environments. In the present work, we evaluated spontaneous gait and exploratory activity at old age, using 16-month-old mice. Male sex was chosen since sex-dependent psychomotor effects of aging are stronger in NTg males than females and, at this age, male 3 × Tg-AD mice are close to an end-of-life status due to increased mortality rates. Mice's behavior was evaluated in a transparent test box during the neophobia response. Stretching, jumping, backward movements and bizarre circling were identified during the gait and exploratory activity. The results corroborate that in the face of novelty and recognition of places, old 3xTg-AD mice exhibit increased bizarre behaviors than mice with normal aging. Furthermore, bizarre circling and backward movements delayed the elicitation of locomotion and exploration, in an already frail scenario, as shown by highly prevalent kyphosis in both groups. Thus, the translational study of co-occurrence of psychomotor impairments and anxiety-like behaviors can be helpful for understanding and managing the progressive functional deterioration shown in aging, especially in AD.
Collapse
Affiliation(s)
- Lidia Castillo-Mariqueo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Peripheral Nerve Impairment in a Mouse Model of Alzheimer's Disease. Brain Sci 2021; 11:brainsci11091245. [PMID: 34573265 PMCID: PMC8465822 DOI: 10.3390/brainsci11091245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/23/2023] Open
Abstract
Sarcopenia, a geriatric syndrome involving loss of muscle mass and strength, is often associated with the early phases of Alzheimer’s disease (AD). Pathological hallmarks of AD including amyloid β (Aβ) aggregates which can be found in peripheral tissues such as skeletal muscle. However, not much is currently known about their possible involvement in sarcopenia. We investigated neuronal innervation in skeletal muscle of Tg2576 mice, a genetic model for Aβ accumulation. We examined cholinergic innervation of skeletal muscle in adult Tg2576 and wild type mice by immunofluorescence labeling of tibialis anterior (TA) muscle sections using antibodies raised against neurofilament light chain (NFL) and acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT). Combining this histological approach with real time quantification of mRNA levels of nicotinic acetylcholine receptors, we demonstrated that in the TA of Tg2576 mice, neuronal innervation is significantly reduced and synaptic area is smaller and displays less ChAT content when compared to wild type mice. Our study provides the first evidence of reduced cholinergic innervation of skeletal muscle in a mouse model of Aβ accumulation. This evidence sustains the possibility that sarcopenia in AD originates from Aβ-mediated cholinergic loss.
Collapse
|