1
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
2
|
Ochocki JD, Khare S, Hess M, Ackerman D, Qiu B, Daisak JI, Worth AJ, Lin N, Lee P, Xie H, Li B, Wubbenhorst B, Maguire TG, Nathanson KL, Alwine JC, Blair IA, Nissim I, Keith B, Simon MC. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metab 2018; 27:1263-1280.e6. [PMID: 29754953 PMCID: PMC5990482 DOI: 10.1016/j.cmet.2018.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/14/2018] [Accepted: 04/11/2018] [Indexed: 01/02/2023]
Abstract
Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer.
Collapse
Affiliation(s)
- Joshua D Ochocki
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanika Khare
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Hess
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Ackerman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Qiu
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennie I Daisak
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J Worth
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nan Lin
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pearl Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Xie
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Li
- Program in Cancer Biology, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tobi G Maguire
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C Alwine
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Itzhak Nissim
- Division of Genetics and Metabolism, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Biochemistry, and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM. Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-70) by de novo assembly of 5'-end sequences of full-length cDNA clones. BIORESOURCE TECHNOLOGY 2012; 109:277-281. [PMID: 22217731 DOI: 10.1016/j.biortech.2011.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
Here the transcriptome of an oil-rich race B strain of Botryococcus braunii (BOT-70) was analyzed to mine genetic information useful in biofuel development. A full-length-enriched cDNA library was constructed via the oligo-capping method and the 5' ends of 11,904 randomly chosen cDNA clones were sequenced. Homology search using BLASTX identified candidate BOT-70 genes for majority of the reactions required for biosynthesis of botryococcenes through the mevalonate-independent pathway. The sequence retrieval from the transcriptome dataset implicated that an alternative entry route into the mevalonate-independent pathway via xylulose-5-phosphate, rather than the conventional entry route via 1-deoxy-d-xylulose-5-phosphate, is predominantly active. Analysis of N-terminal sequences of the retrieved genes indicated that the final reactions of botryococcene biosynthesis are likely to take place outside of chloroplasts. The transcriptome dataset has been deposited in the GenBank/EMBL/DDBJ database.
Collapse
Affiliation(s)
- Motohide Ioki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | |
Collapse
|
5
|
Tang SW, Yang TC, Lin WC, Chang WH, Wang CC, Lai MK, Lin JY. Nicotinamide N-methyltransferase induces cellular invasion through activating matrix metalloproteinase-2 expression in clear cell renal cell carcinoma cells. Carcinogenesis 2010; 32:138-45. [PMID: 21045016 DOI: 10.1093/carcin/bgq225] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) was recently identified as one clear cell renal cell carcinoma (ccRCC)-associated gene by analyzing full-length complementary DNA-enriched libraries of ccRCC tissues. The aim of this study is to investigate the potential role of NNMT in cellular invasion. A strong NNMT expression is accompanied with a high invasive activity in ccRCC cell lines, and small interfering RNA-mediated NNMT knockdown effectively suppressed the invasive capacity of ccRCC cells, whereas NNMT overexpression markedly enhanced that of human embryonic kidney 293 (HEK293) cells. A positive correlation between the expression of NNMT and matrix metallopeptidase (MMP)-2 was found in ccRCC cell lines and clinical tissues. The treatment of blocking antibody or inhibitor specific to MMP-2 significantly suppressed NNMT-dependent cellular invasion in HEK293 cells. Furthermore, SP-1-binding region of MMP-2 promoter was found to be essential in NNMT-induced MMP-2 expression. The specific inhibitors of PI3K/Akt signaling markedly decreased the binding of SP1 to MMP-2 promoter as shown by chromatin immunoprecipitation assay. We also demonstrated that PI3K/Akt pathway plays a role in NNMT-dependent cellular invasion and MMP-2 activation. Moreover, short hairpin RNA-mediated knockdown of NNMT expression efficiently inhibited the growth and metastasis of ccRCC cells in non-obese diabetic severe combined immunodeficiency mice. Taken together, the present study suggests that NNMT has a crucial role in cellular invasion via activating PI3K/Akt/SP1/MMP-2 pathway in ccRCC.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
At the cell surface, activation of the epidermal growth factor (EGF) receptor triggers a complex network of signalling events that regulate a variety of cellular processes. For signal termination, the activated EGF receptor is internalised and targeted to lysosomes for degradation. Microdomain localization at the plasma membrane and endocytic transport of the EGFR is important for the formation of compartment-specific signalling complexes and is regulated by scaffolding and targeting proteins. This includes Ca2+-effector proteins, such as calmodulin and annexins (Anx), in particular AnxA1, AnxA2, AnxA6 and as shown recently,AnxA8. Given that these annexins show differences in their expression patterns, subcellular localization and mode of action, they are likely to differentially contribute and cooperate in the fine-tuning of EGFR activity. In support of this hypothesis, current literature suggests these annexins to be involved in different steps that control the endocytic transport and signalling of the EGF receptor. This review summarizes how the coordinated activity of AnxA1, AnxA2, AnxA6 and AnxA8 can contribute to regulate EGF receptor localization and activity.
Collapse
Affiliation(s)
- Thomas Grewal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
7
|
Liu YH, Lin CY, Lin WC, Tang SW, Lai MK, Lin JY. Up-regulation of vascular endothelial growth factor-D expression in clear cell renal cell carcinoma by CD74: a critical role in cancer cell tumorigenesis. THE JOURNAL OF IMMUNOLOGY 2009; 181:6584-94. [PMID: 18941249 DOI: 10.4049/jimmunol.181.9.6584] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elevation of CD74 is associated with a number of human cancers, including clear cell renal cell carcinoma (ccRCC). To understand the role of CD74 in the oncogenic process of ccRCC, we ectopically expressed CD74 in human embryonic kidney 293 cells (HEK/CD74) and evaluated its oncogenic potential. Through overexpression of CD74 in HEK293 and Caki-2 cells and down-regulation of CD74 in Caki-1 cells, we show that vascular endothelial growth factor-D (VEGF-D) expression is modified accordingly. A significant, positive correlation between CD74 and VEGF-D is found in human ccRCC tissues (Pearson's correlation, r = 0.65, p < 0.001). In HEK/CD74 xenograft mice, CD74 significantly induced the formation of tumor masses, increased tumor-induced angiogenesis, and promoted cancer cell metastasis. Blockage of VEGF-D expression by small interference RNA resulted in a decrease in cell proliferation, invasion, and cancer cell-induced HUVEC migration enhanced by CD74. Furthermore, we provide evidence that the intracellular signaling cascade responsible for VEGF-D up-regulation by CD74 is both PI3K/AKT- and MEK/ERK-dependent, both of which are associated with NF-kappaB nuclear translocation and DNA-binding activity. These results suggest that VEGF-D is crucial for CD74-induced human renal carcinoma cancer cell tumorigenesis.
Collapse
Affiliation(s)
- Yu-Huei Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Tang SW, Chang WH, Su YC, Chen YC, Lai YH, Wu PT, Hsu CI, Lin WC, Lai MK, Lin JY. MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells. Cancer Lett 2008; 273:35-43. [PMID: 18809243 DOI: 10.1016/j.canlet.2008.07.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/25/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the major and aggressive subtype of RCC. Previously, we identified 383 differentially expressed genes by analyzing full-length cDNA libraries of ccRCC and normal kidney tissues. In this study, we applied functional network analysis to the differentially expressed genes for identifying deregulated molecular pathways in ccRCC, and the results indicated that MYC showed a prominent role in the highest scoring network. The upregulation of MYC expression was validated in ccRCC tissues and cell lines. Furthermore, Knockdown of MYC expression by MYC-specific siRNA significantly inhibited the abilities of uncontrolled proliferation, anchorage-independent growth and arrested cell cycle in the G0/G1 phase in ccRCC cells. Moreover, we found that 37 differentially expressed genes were shown to be MYC-target genes, and the upregulation of the MYC-target genes BCL2, CCND1, PCNA, PGK1, and VEGFA were demonstrated. The expression of these MYC-target genes was significantly correlated with the expression of MYC in ccRCC tissues, and knockdown of MYC also suppressed the expression of these MYC-target genes in ccRCC cells. The recruitment of MYC to the promoter regions of BCL2, CCND1, PCNA, PGK1, and VEGFA was shown by Chromatin immunoprecipitation assay. These results suggest that MYC pathway is activated and plays an essential role in the proliferation of ccRCC cells.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
McBee JK, Yu LR, Kinoshita Y, Uo T, Beyer RP, Veenstra TD, Morrison RS. Proteomic analysis of protein expression changes in a model of gliomagenesis. Proteomics Clin Appl 2007; 1:1485-98. [PMID: 21136645 DOI: 10.1002/prca.200700292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loss of p53 function is a common event in a variety of human cancers including tumors of glial origin. Using an in vitro mouse model of malignant astrocyte transformation, three cleavable isotope coded affinity tag (cICAT) experiments were performed comparing cultured wild-type astrocytes and two p53(-/-) astrocyte cultures before and after malignant transformation. We identified and quantitated an average of 1366 proteins per experiment and demonstrated that the protein quantitation ratios in each individual cICAT experiment correlated well to ratios determined in the other two studies. These data were further supported by microarray analysis which also correlated to changes in protein expression. The results showed significant changes in protein expression in association with malignant transformation. Proteins overexpressed in malignant astrocytes were typically involved in ribosome biogenesis/protein synthesis and DNA replication, while underexpressed proteins were generally associated with the regulation of cell cycle checkpoint control, tumor suppression, and apoptosis. Among the significantly up-regulated proteins and transcripts in malignant mouse astrocytes were members of the minichromosome maintenance (MCM) family. Western blot analysis verified increased expression of MCM proteins in malignant human astrocytoma cell lines, which had not previously been described. These results demonstrate the usefulness of the cICAT approach for comparing differences in protein expression profiles between normal and malignant cells.
Collapse
Affiliation(s)
- Joshua K McBee
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA; Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Szlosarek PW, Grimshaw MJ, Wilbanks GD, Hagemann T, Wilson JL, Burke F, Stamp G, Balkwill FR. Aberrant regulation of argininosuccinate synthetase by TNF-alpha in human epithelial ovarian cancer. Int J Cancer 2007; 121:6-11. [PMID: 17354225 DOI: 10.1002/ijc.22666] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pro-inflammatory cytokine, tumour necrosis factor-alpha, TNF-alpha, is dysregulated in malignant compared with normal ovarian surface epithelium (OSE). Several epidemiological studies have associated inflammation with ovarian tumorigenesis, with TNF-alpha playing a key role in modulating invasion, angiogenesis and metastasis. Here, we show that TNF-alpha also induces expression of arate-limiting enzyme in arginine synthesis, argininosuccinate synthetase (AS), thereby linking inflammation with several arginine-dependent metabolic pathways, implicated in accelerated carcinogenesis and tumour progression. Having identified AS mRNA induction in TNF-alpha-treated IGROV-1 ovarian cancer cells, using RNA-arbitrarily primed-PCR, we then observed differential regulation of AS mRNA and protein in malignant, compared with normal, OSE cells. A cDNA cancer profiling array with matched normal ovarian and ovarian tumour samples revealed increased expression of AS mRNA in the latter. Moreover, AS protein co-localised with TNF-alpha in ovarian cancer cells, with significantly higher levels of AS in malignant compared with normal ovarian tissue. Increased co-expression of AS and TNF-alpha mRNA was also observed in 2 other epithelial tumours, non-small cell lung and stomach cancer, compared with normal corresponding tissues. In summary, high levels of AS expression, which may be required for several arginine-dependent processes in cancer, including the production of nitric oxide, proline, pyrimidines and polyamines, is regulated by TNF-alpha and may provide an important molecular pathway linking inflammation and metabolism to ovarian tumorigenesis.
Collapse
Affiliation(s)
- Peter W Szlosarek
- Cancer Research UK, Translational Oncology Laboratory, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|