1
|
Ghosh R, Biswas S, Bagchi A, Chattopadhyay SK. Synthesis and Evaluation of 9- epi-Koshidacin B as Selective Inhibitor of Histone Deacetylase 1. JOURNAL OF NATURAL PRODUCTS 2024; 87:2757-2767. [PMID: 39655856 DOI: 10.1021/acs.jnatprod.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
A concise synthetic route to an epimer of the recently isolated biologically active cyclic tetrapeptide koshidacin B has been developed, which featured a late-stage functionalization of a macrocyclic scaffold through a cross metathesis reaction. The synthetic 9-epi-koshidacin B showed marginal differences in spectroscopic behavior with that of the natural product but exhibited conformational preferences similar to those reported for analogous substrate chlamydocin. Moreover, it exhibited a useful level of selective inhibition of biologically relevant enzyme histone deacetylase 1 with an IC50 value of 0.145 μM over two other isoforms. Docking studies indicate that the natural product as well as its 9-epimer binds very similarly to the active site of HDAC1 indicating little influence of the configuration of the C9-stereocenter.
Collapse
Affiliation(s)
- Rajat Ghosh
- Department of Chemistry, University of Kalyani, Kalyani 741235 West Bengal, India
| | - Sima Biswas
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235 West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235 West Bengal, India
| | | |
Collapse
|
2
|
Bak-Sypien I, Pawlak T, Paluch P, Wroblewska A, Dolot R, Pawlowicz A, Szczesio M, Wielgus E, Kaźmierski S, Górecki M, Pawlowska R, Chworos A, Potrzebowski MJ. Influence of heterochirality on the structure, dynamics, biological properties of cyclic(PFPF) tetrapeptides obtained by solvent-free ball mill mechanosynthesis. Sci Rep 2024; 14:12825. [PMID: 38834643 DOI: 10.1038/s41598-024-63552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Collapse
Affiliation(s)
- Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aneta Wroblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aleksandra Pawlowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St., 61-704, Poznan, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116 St., 90-924, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland.
| |
Collapse
|
3
|
Li S, Wang Z, Song S, Tang Y, Zhou J, Liu X, Zhang X, Chang M, Wang K, Peng Y. Membrane-Active All-Hydrocarbon-Stapled α-Helical Amphiphilic Tat Peptides: Broad-Spectrum Antibacterial Activity and Low Incidence of Drug Resistance. ACS Infect Dis 2024; 10:1839-1855. [PMID: 38725407 DOI: 10.1021/acsinfecdis.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuanyuan Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Budimir ZL, Patel RS, Eggly A, Evans CN, Rondon-Cordero HM, Adams JJ, Das C, Parkinson EI. Biocatalytic cyclization of small macrolactams by a penicillin-binding protein-type thioesterase. Nat Chem Biol 2024; 20:120-128. [PMID: 38062262 PMCID: PMC10999230 DOI: 10.1038/s41589-023-01495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Macrocyclic peptides represent promising scaffolds for chemical tools and potential therapeutics. Synthetic methods for peptide macrocyclization are often hampered by C-terminal epimerization and oligomerization, leading to difficult scalability. While chemical strategies to circumvent this issue exist, they often require specific amino acids to be present in the peptide sequence. Herein, we report the characterization of Ulm16, a peptide cyclase belonging to the penicillin-binding protein-type class of thioesterases that catalyze head-to-tail macrolactamization of nonribosmal peptides. Ulm16 efficiently cyclizes various nonnative peptides ranging from 4 to 6 amino acids with catalytic efficiencies of up to 3 × 106 M-1 s-1. Unlike many previously described homologs, Ulm16 tolerates a variety of C- and N-terminal amino acids. The crystal structure of Ulm16, along with modeling of its substrates and site-directed mutagenesis, allows for rationalization of this wide substrate scope. Overall, Ulm16 represents a promising tool for the biocatalytic production of macrocyclic peptides.
Collapse
Affiliation(s)
| | - Rishi S Patel
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Alyssa Eggly
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Claudia N Evans
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Jessica J Adams
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Somsakeesit LO, Senawong T, Senawong G, Kumboonma P, Samankul A, Namwan N, Yenjai C, Phaosiri C. Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors. J Nat Med 2024; 78:236-245. [PMID: 37991632 DOI: 10.1007/s11418-023-01758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 μM, 91.71 ± 0.27 μM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 μM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.
Collapse
Affiliation(s)
- La-Or Somsakeesit
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanaset Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gulsiri Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand
| | - Arunta Samankul
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Narissara Namwan
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanokbhorn Phaosiri
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Gomez JS, Shaikhet M, Loganathan AK, Darnowski MG, Boddy CN, McMullin DR, Avis TJ. Characterization of Arthropeptide B, an Antifungal Cyclic Tetrapeptide from Arthrobacter humicola. J Chem Ecol 2023; 49:528-536. [PMID: 37322383 DOI: 10.1007/s10886-023-01438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Disease suppressive composts are known, yet little information on the potential role of specific microbial antagonist within are available. Arthrobacter humicola isolate M9-1A has been obtained from a compost prepared from marine residues and peat moss. The bacterium is a non-filamentous actinomycete with antagonistic activity against plant pathogenic fungi and oomycetes sharing its ecological niche in agri-food microecosystems. Our objective was to identify and characterize compounds with antifungal activity produced by A. humicola M9-1A. Arthrobacter humicola culture filtrates were tested for antifungal activity in vitro and in vivo and a bioassay-guided approach was used to identify potential chemical determinants of its observed activity against molds. The filtrates reduced the development of lesions of Alternaria rot on tomatoes and the ethyl acetate extract inhibited growth of Alternaria alternata. A compound, arthropeptide B [cyclo-(L-Leu, L-Phe, L-Ala, L-Tyr)], was purified from the ethyl acetate extract of the bacterium. Arthropeptide B is a new chemical structure reported for the first time and has shown antifungal activity against A. alternata spore germination and mycelial growth.
Collapse
Affiliation(s)
| | - Michael Shaikhet
- Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Michael G Darnowski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Tyler J Avis
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
- Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
7
|
Zaczyńska E, Kaczmarek K, Zabrocki J, Artym J, Zimecki M. Antiviral Activity of a Cyclic Pro-Pro- β3-HoPhe-Phe Tetrapeptide against HSV-1 and HAdV-5. Molecules 2022; 27:3552. [PMID: 35684487 PMCID: PMC9182219 DOI: 10.3390/molecules27113552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
The core of Cyclolinopeptide A (CLA, cyclo(LIILVPPFF)), responsible for its high immunosuppressive activity, contains a Pro-Pro-Phe-Phe sequence. A newly synthesized cyclic tetrapeptide, cyclo(Pro-Pro-β3-HoPhe-Phe) (denoted as 4B8M) bearing the active sequence of CLA, was recently shown to exhibit a wide array of anti-inflammatory properties in mouse models. In this investigation, we demonstrate that the peptide significantly inhibits the replication of human adenovirus C serotype 5 (HAdV-5) and Herpes simplex virus type-1 (HSV-1) in epithelial lung cell line A-549, applying Cidofovir and Acyclovir as reference drugs. Based on a previously established mechanism of its action, we propose that the peptide may inhibit virus replication by the induction of PGE2 acting via EP2/EP4 receptors in epithelial cells. In summary, we reveal a new, antiviral property of this anti-inflammatory peptide.
Collapse
Affiliation(s)
- Ewa Zaczyńska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland; (K.K.); (J.Z.)
| | - Jolanta Artym
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| |
Collapse
|
8
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Han J, Wang H, Zhang R, Dai H, Chen B, Wang T, Sun J, Wang W, Song F, Li E, Lyu Z, Liu H. Cyclic Tetrapeptides with Synergistic Antifungal Activity from the Fungus Aspergillus westerdijkiae Using LC-MS/MS-Based Molecular Networking. Antibiotics (Basel) 2022; 11:166. [PMID: 35203768 PMCID: PMC8868193 DOI: 10.3390/antibiotics11020166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/03/2022] Open
Abstract
Fungal natural products play a prominent role in the development of pharmaceuticalagents. Two new cyclic tetrapeptides (CTPs), westertide A (1) and B (2), with eight known compounds (3-10) were isolated from the fungus Aspergillus westerdijkiae guided by OSMAC (one strain-many compounds) and molecular networking strategies. The structures of new compounds were unambiguously determined by a combination of NMR and mass data analysis, and chemical methods. All of the isolates were evaluated for antimicrobial effects, synergistic antifungal activity, cytotoxic activity, and HDAC inhibitory activity. Compounds 1-2 showed synergistic antifungal activity against Candida albicans SC5314 with the presence of rapamycin and weak HDAC (histone deacetylase) inhibitory activity. These results indicate that molecular networking is an efficient approach for dereplication and identification of new CTPs. CTPs might be a good starting point for the development of synergistic antifungal agents.
Collapse
Affiliation(s)
- Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
| | - Hanying Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Rui Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
| | - Fuhang Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Erwei Li
- Institutional Center for Shared Technologies and Facilities, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhitang Lyu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.H.); (H.W.); (R.Z.); (H.D.); (B.C.); (T.W.); (J.S.); (W.W.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Saharan R, Kumar S, Khokra SL, Singh S, Tiwari A, Tiwari V, Sahoo BM, Kumar M. A Comprehensive Review on Therapeutic Potentials of Natural Cyclic Peptides. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220114153509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Cyclic peptides have emerged as a promising class of organic compounds that possess polypeptide chains with a cyclic ring structure. There is a circular sequence of bonds in which the ring structure is formed via linkage between one end of the peptide bond and the other end with an amide bond or any other chemically stable bonds like ether, thioether, lactone, and disulfide. Generally, the cyclic peptides are isolated from natural resources like invertebrate animals, micro-organisms of marine habitats, and higher plants. These cyclic peptides possess unique structures with diverse pharmacological activities. Now a day, cyclic peptides possess superior therapeutic value due to several reasons such as greater resistance to enzymatic degradation (in vivo) and higher bio-availability. Some of these cyclic peptides are rich in leucine, proline while some have other amino acids as their major constituents. Numerous novel cyclic peptides isolated from natural sources are successfully developed as bioactive products. Recently, cyclic peptides derived from natural resources have attracted attention for exploring their numerous beneficial effects. Moreover, it is reported that natural cyclic peptides exhibit various therapeutic activities like an anthelmintic, ACE inhibitor, anti-tumor, microtubule inhibitor, anti-fungal, anti-malarial, and platelet aggregation inhibiting activity. In this review, various cyclic peptides are reported with structures and biological activities that are isolated from various natural sources. The natural cyclic peptides possess a wide spectrum of biological activities and can become a drug of the future for replacing the existing drugs which develop resistance
Collapse
Affiliation(s)
- Renu Saharan
- Maharishi Markandeshwar Deemed to be University, Mullana, Ambala-133207, Haryana, India
| | - Suresh Kumar
- Bharat Institute of Pharmacy, Pehladpur, Babain, Kurukshetra- 136156, Haryana, India
| | - Sukhbir Lal Khokra
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana-136119, India
| | - Sunil Singh
- Department of Pharmaceutical Chemistry, Shri Sai College of Pharmacy, Handia, Prayagraj-136119, U.P., India
| | - Abhishek Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (U.S. Nagar), Uttrakhand-236148, India
| | - Varsha Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (U.S. Nagar), Uttrakhand-236148, India
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India
| | - Manish Kumar
- Maharishi Markandeshwar Deemed to be University, Mullana, Ambala-133207, Haryana, India
| |
Collapse
|
11
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
12
|
Ramlawi S, Aitken A, Abusharkh S, McMullin DR, Avis TJ. Arthropeptide A, an antifungal cyclic tetrapeptide from Arthrobacter psychrophenolicus isolated from disease suppressive compost. Nat Prod Res 2021; 36:5715-5723. [PMID: 34933636 DOI: 10.1080/14786419.2021.2018434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In an effort to describe bioactive antifungal compounds from antagonistic bacteria with potential for biocontrol of plant pathogens, a strain of Arthrobacter psychrophenolicus was collected from plant disease suppressive compost prepared from composted material of marine origin. Few natural products have been characterized from the non-filamentous Actinobacteria genus Arthrobacter. A new cyclic tetrapeptide, cyclo-(L-Pro-L-Leu-L-γHyp-L-Tyr); arthropeptide A (1), was isolated from the EtOAc soluble culture filtrate extract of A. psychrophenolicus M9-17 grown in MOLP broth. Its structure was confirmed by HRMS, interpretation of NMR data, and a modified Marfey's method. Arthropeptide A (1) displayed antifungal activity towards Alternaria alternata, the causal agent of disease in numerous host plant species, which had shown the previous susceptibility to A. psychrophenolicus. The newly identified compound may be responsible, in part, for the inhibitory activity of the bacterium against fungal plant pathogens.
Collapse
Affiliation(s)
- Serine Ramlawi
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Alex Aitken
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - Sawsan Abusharkh
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Tyler J Avis
- Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
13
|
Gou S, Li B, Ouyang X, Ba Z, Zhong C, Zhang T, Chang L, Zhu Y, Zhang J, Zhu N, Zhang Y, Liu H, Ni J. Novel Broad-Spectrum Antimicrobial Peptide Derived from Anoplin and Its Activity on Bacterial Pneumonia in Mice. J Med Chem 2021; 64:11247-11266. [PMID: 34180670 DOI: 10.1021/acs.jmedchem.1c00614] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The emergence of multidrug-resistant bacteria has major issues for treating bacterial pneumonia. Currently, anoplin (GLLKRIKTLL-NH2) is a natural antimicrobial candidate derived from wasp venom. In this study, a series of new antimicrobial peptide (AMP) anoplin analogues were designed and synthesized. The relationship between their biological activities and their positive charge, hydrophobicity, amphipathicity, and secondary structure are described. The characteristic shared by these peptides is that positively charged amino acids and hydrophobic amino acids are severally arranged on the hydrophilic and hydrophobic surface of the α-helix to form a completely amphiphilic structure. To achieve ideal AMPs, below the range of the threshold of the cytotoxicity and hemolytic activity, their charges and hydrophobicity were increased as much. Among the new analogues, A-21 (KWWKKWKKWW-NH2) exhibited the greatest antimicrobial activity (geometric mean of minimum inhibitory concentrations = 4.76 μM) against all the tested bacterial strains, high bacterial cell selectivity in vitro, high effectiveness against bacterial pneumonia in mice infected with Klebsiella pneumoniae, and low toxicity in mice (LD50 = 82.01 mg/kg). A-21 exhibited a potent bacterial membrane-damaging mechanism and lipopolysaccharide-binding ability. These data provide evidence that A-21 is a promising antimicrobial candidate for the treatment of bacterial pneumonia.
Collapse
Affiliation(s)
- Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianyue Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - LinLin Chang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Zhang JN, Xia YX, Zhang HJ. Natural Cyclopeptides as Anticancer Agents in the Last 20 Years. Int J Mol Sci 2021; 22:3973. [PMID: 33921480 PMCID: PMC8068844 DOI: 10.3390/ijms22083973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclopeptides or cyclic peptides are polypeptides formed by ring closing of terminal amino acids. A large number of natural cyclopeptides have been reported to be highly effective against different cancer cells, some of which are renowned for their clinical uses. Compared to linear peptides, cyclopeptides have absolute advantages of structural rigidity, biochemical stability, binding affinity as well as membrane permeability, which contribute greatly to their anticancer potency. Therefore, the discovery and development of natural cyclopeptides as anticancer agents remains attractive to academic researchers and pharmaceutical companies. Herein, we provide an overview of anticancer cyclopeptides that were discovered in the past 20 years. The present review mainly focuses on the anticancer efficacies, mechanisms of action and chemical structures of cyclopeptides with natural origins. Additionally, studies of the structure-activity relationship, total synthetic strategies as well as bioactivities of natural cyclopeptides are also included in this article. In conclusion, due to their characteristic structural features, natural cyclopeptides have great potential to be developed as anticancer agents. Indeed, they can also serve as excellent scaffolds for the synthesis of novel derivatives for combating cancerous pathologies.
Collapse
Affiliation(s)
| | | | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China; (J.-N.Z.); (Y.-X.X.)
| |
Collapse
|
15
|
Matsuda K, Fujita K, Wakimoto T. PenA, a penicillin-binding protein-type thioesterase specialized for small peptide cyclization. J Ind Microbiol Biotechnol 2021; 48:6169712. [PMID: 33713128 PMCID: PMC9113502 DOI: 10.1093/jimb/kuab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022]
Abstract
Penicillin-binding protein-type thioesterases (PBP-type TEs) are a recently identified group of peptide cyclases that catalyze head-to-tail macrolactamization of nonribosomal peptides. PenA, a new member of this group, is involved in the biosyntheses of cyclic pentapeptides. In this study, we demonstrated the enzymatic activity of PenA in vitro, and analyzed its substrate scope with a series of synthetic substrates. A comparison of the reaction profiles between PenA and SurE, a representative PBP-type TE, showed that PenA is more specialized for small peptide cyclization. A computational model provided a possible structural rationale for the altered specificity for substrate chain lengths.
Collapse
Affiliation(s)
- Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| |
Collapse
|
16
|
Román-Hurtado F, Sánchez-Hidalgo M, Martín J, Ortiz-López FJ, Carretero-Molina D, Reyes F, Genilloud O. One Pathway, Two Cyclic Non-Ribosomal Pentapeptides: Heterologous Expression of BE-18257 Antibiotics and Pentaminomycins from Streptomyces cacaoi CA-170360. Microorganisms 2021; 9:135. [PMID: 33430167 PMCID: PMC7827011 DOI: 10.3390/microorganisms9010135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
The strain Streptomyces cacaoi CA-170360 produces the cyclic pentapeptides pentaminomycins A-H and BE-18257 A-C, two families of cyclopeptides synthesized by two non-ribosomal peptide synthetases encoded in tandem within the same biosynthetic gene cluster. In this work, we have cloned and confirmed the heterologous expression of this biosynthetic gene cluster, demonstrating that each of the non-ribosomal peptide synthetases present in the cluster is involved in the biosynthesis of each group of cyclopeptides. In addition, we discuss the involvement of a stand-alone enzyme belonging to the Penicillin Binding Protein family in the release and macrocyclization of the peptides.
Collapse
Affiliation(s)
| | - Marina Sánchez-Hidalgo
- Fundación MEDINA, Avenida del Conocimiento 34, 18016 Granada, Spain; (F.R.-H.); (J.M.); (F.J.O.-L.); (D.C.-M.); (F.R.); (O.G.)
| | | | | | | | | | | |
Collapse
|
17
|
Maruca A, Rocca R, Catalano R, Mesiti F, Costa G, Lanzillotta D, Salatino A, Ortuso F, Trapasso F, Alcaro S, Artese A. Natural Products Extracted from Fungal Species as New Potential Anti-Cancer Drugs: A Structure-Based Drug Repurposing Approach Targeting HDAC7. Molecules 2020; 25:E5524. [PMID: 33255661 PMCID: PMC7728054 DOI: 10.3390/molecules25235524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mushrooms can be considered a valuable source of natural bioactive compounds with potential polypharmacological effects due to their proven antimicrobial, antiviral, antitumor, and antioxidant activities. In order to identify new potential anticancer compounds, an in-house chemical database of molecules extracted from both edible and non-edible fungal species was employed in a virtual screening against the isoform 7 of the Histone deacetylase (HDAC). This target is known to be implicated in different cancer processes, and in particular in both breast and ovarian tumors. In this work, we proposed the ibotenic acid as lead compound for the development of novel HDAC7 inhibitors, due to its antiproliferative activity in human breast cancer cells (MCF-7). These promising results represent the starting point for the discovery and the optimization of new HDAC7 inhibitors and highlight the interesting opportunity to apply the "drug repositioning" paradigm also to natural compounds deriving from mushrooms.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Roberta Rocca
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Delia Lanzillotta
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Alessandro Salatino
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (D.L.); (A.S.); (F.T.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.M.); (R.C.); (F.M.); (G.C.); (F.O.); (A.A.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
| |
Collapse
|
18
|
|
19
|
Guzmán EA. Regulated Cell Death Signaling Pathways and Marine Natural Products That Target Them. Mar Drugs 2019; 17:md17020076. [PMID: 30678065 PMCID: PMC6410226 DOI: 10.3390/md17020076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Our understanding of cell death used to consist in necrosis, an unregulated form, and apoptosis, regulated cell death. That understanding expanded to acknowledge that apoptosis happens through the intrinsic or extrinsic pathways. Actually, many other regulated cell death processes exist, including necroptosis, a regulated form of necrosis, and autophagy-dependent cell death. We also understand that apoptosis occurs beyond the intrinsic and extrinsic pathways with caspase independent forms of apoptosis existing. Our knowledge of the signaling continues to grow, and with that, so does our ability to target different parts of the pathways with small molecules. Marine natural products co-evolve with their targets, and these unique molecules have complex structures with exquisite biological activities and specificities. This article offers a review of our current understanding of the signaling pathways regulating cell death, and highlights marine natural products that can affect these signaling pathways.
Collapse
Affiliation(s)
- Esther A Guzmán
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
20
|
Richard M, Ariztia J, Lamandé-Langle S, Pellegrini Moïse N. Sugar γ-Amino Acids as Building Blocks for the Synthesis of Cyclic Neoglycopeptides. ChemistrySelect 2018. [DOI: 10.1002/slct.201802146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Julen Ariztia
- Université de Lorraine, CNRS, L2CM; F-5400 Nancy France
| | | | | |
Collapse
|
21
|
Abdalla MA, McGaw LJ. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review. Molecules 2018; 23:molecules23082080. [PMID: 30127265 PMCID: PMC6222632 DOI: 10.3390/molecules23082080] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023] Open
Abstract
Peptides are important biomolecules which facilitate the understanding of complex biological processes, which in turn could be serendipitous biological targets for future drugs. They are classified as a unique therapeutic niche and will play an important role as fascinating agents in the pharmaceutical landscape. Until now, more than 40 cyclic peptide drugs are currently in the market, and approximately one new cyclopeptide drug enters the market annually on average. Interestingly, the majority of clinically approved cyclic peptides are derived from natural sources, such as peptide antibiotics and human peptide hormones. In this report, the importance of cyclic peptides is discussed, and their role in drug discovery as interesting therapeutic biomolecules will be highlighted. Recently isolated naturally occurring cyclic peptides from microorganisms, sponges, and other sources with a wide range of pharmacological properties are reviewed herein.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
- Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan.
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
22
|
Rehman NU, Abed RMM, Hussain H, Khan HY, Khan A, Khan AL, Ali M, Al-Nasri A, Al-Harrasi K, Al-Rawahi AN, Wadood A, Al-Rawahi A, Al-Harrasi A. Anti-proliferative potential of cyclotetrapeptides from Bacillus velezensis RA5401 and their molecular docking on G-Protein-Coupled Receptors. Microb Pathog 2018; 123:419-425. [PMID: 30075241 DOI: 10.1016/j.micpath.2018.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
Elucidation of bioactive chemical compounds from rhizobacteria is highly utilized in pharmaceuticals and naturopathy, due to their health benefits to human and plants. In current study, four cyclopeptides along with one phenyl amide were isolated from the ethyl acetate extract of Bacillus velezensis sp. RA5401. Their structures were determined and characterized as cycle (L-prolyl-L-leucyl)2 (1), cyclo (L-prolyl-l-valine)2 (2), cycle (L-phenylanalyl-L-propyl)2 (3), cyclo (D-pro-L-tyr-L-pro-L-tyr)2 (4) and N-(2-phenylethyl)acetamide (5) on the basis of electron spray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR) techniques and comparison with the literature data. The five compounds have been isolated for the first time from this species. The effect of various concentrations of these compounds on the proliferation of MDA-MB-231 breast cancer cells was examined. It was found that 1 and 2 induced concentration-independent anti-proliferative effects, while 3, 4 and 5 inhibited cancer cell proliferation in a concentration-dependent manner. Furthermore, to determine the suitable binding targets of these compounds within cancer cell line, detailed target prediction and comparative molecular-docking studies were performed. The compounds 1 and 2 hit intracellular anti-cancer targets of proteases family, while compounds 3, 4 and 5 interacted with different membrane receptors of G-Protein-Coupled Receptors (GPCRs). In conclusion, the Bacillus velezensis RA5401 can be an ideal strain to produce anti-proliferative constituents at industrial scale.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Raeid M M Abed
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Hidayat Hussain
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Husain Yar Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Abdul L Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Majid Ali
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Abdullah Al-Nasri
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Khalid Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ahmed N Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman.
| |
Collapse
|
23
|
Abdalla MA, McGaw LJ. Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes. Front Pharmacol 2018; 9:456. [PMID: 29867466 PMCID: PMC5966565 DOI: 10.3389/fphar.2018.00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
South Africa has a long history and strong belief in traditional herbal medicines. Using ethnobotanical knowledge as a lead, a large number of South African medicinal plants have been discovered to possess a wide spectrum of pharmacological properties. In this review, bioprospecting of endophytes is highlighted by following the advantages of the ethnomedicinal approach together with identifying unique medicinal plants where biological activity may be due to endophytes. This review focuses on the current status of South African medicinal plants to motivate the research community to harness the benefits of ethnobotanical knowledge to investigate the presence of endophytic microbes from the most potent South African medicinal plants. The potential chemical diversity and subsequent putative medicinal value of endophytes is deserving of further research. A timely and comprehensive review of literature on recently isolated endophytes and their metabolites was conducted. Worldwide literature from the last 2 years demonstrating the importance of ethnobotanical knowledge as a useful approach to discover endophytic microbes was documented. Information was obtained from scientific databases such as Pubmed, Scopus, Scirus, Google Scholar, Dictionary of Natural Products, Chemical Abstracts Services, official websites, and scientific databases on ethnomedicines. Primary sources such as books, reports, dissertations, and thesises were accessed where available. Recently published information on isolated endophytes with promising bioactivity and their bioactive natural products worldwide (2015-2017) was summarized. The potential value of South African medicinal plants as sources of endophytes is discussed. The insights provided through this study indicate that medicinal plants in South Africa are highly under-investigated sources of potentially useful endophytic microbes. New approaches may be used by medicinal plant scientists for further exploration of natural products from endophytic fungi and bacteria in southern Africa.
Collapse
Affiliation(s)
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Huang KJ, Huang YC, Lin YA. Synthesis of Histidine-Containing Oligopeptides via Histidine-Promoted Peptide Ligation. Chem Asian J 2018; 13:400-403. [PMID: 29345421 DOI: 10.1002/asia.201701802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Histidine-containing peptides are valuable therapeutic agents for a treatment of neurodegenerative diseases. However, the synthesis of histidine-containing peptides is not trivial due to the potential of imidazole sidechain of histidine to act as a nucleophile if unprotected. A peptide ligation method utilizing the imidazole sidechain of histidine has been developed. The key imidazolate intermediate that acts as an internal acyl transfer catalyst during ligation is generated by deprotonation. Transesterification with amino acids or peptides tethered with C-terminal thioester followed by N→N acyl shifts led to the final ligated products. A range of histidine-containing dipeptides could be synthesized in moderate to good yields via this method without protecting the imidazole sidechain. The protocol was further extended to tripeptide synthesis via a long-range N→N acyl transfer, and tetrapeptide synthesis.
Collapse
Affiliation(s)
- Kai-Jin Huang
- Department of Chemistry, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Yi-Chen Huang
- Department of Chemistry, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Yuya A Lin
- Department of Chemistry, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
25
|
Wiese J, Abdelmohsen UR, Motiei A, Humeida UH, Imhoff JF. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorg Med Chem Lett 2018; 28:558-561. [PMID: 29422389 DOI: 10.1016/j.bmcl.2018.01.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/25/2022]
Abstract
A new cyclic hexapeptide, cyclo-(Gly-Leu-Val-IIe-Ala-Phe), named bacicyclin (1), was isolated from a marine Bacillus sp. strain associated with Mytilus edulis. The sequences of the amino acid building blocks of the cyclic peptide and its structure were determined by 1D- and 2D-NMR techniques. Marfey's analysis showed that the amino acid building blocks had L-configuration in all cases except for alanine and phenylalanine, which had D-configuration. Bacicyclin (1) exhibited antibacterial activity against the clinically relevant strains Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentration values of 8 and 12 µM, respectively. These results demonstrate the potential of marine bacteria as a promising source for the discovery of new antibiotics.
Collapse
Affiliation(s)
- Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany.
| | | | - Asa Motiei
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany; Stockholm University, Department of Environmental Science and Analytical Chemistry, (ACES), 10691 Stockholm, Sweden
| | - Ute Hentschel Humeida
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany; Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany; Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
26
|
van de Wakker SI, Fischer MJ, Oosting RS. New drug-strategies to tackle viral-host interactions for the treatment of influenza virus infections. Eur J Pharmacol 2017; 809:178-190. [DOI: 10.1016/j.ejphar.2017.05.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
|
27
|
Wang D, Liu C, Li Z, Wang Y, Wang W, Wu X, Wang K, Miao W, Li L, Peng L. Regulation of Histone Acetylation on Expression Profiles of Potassium Channels During Cardiomyocyte Differentiation From Mouse Embryonic Stem Cells. J Cell Biochem 2017; 118:4460-4467. [PMID: 28464250 DOI: 10.1002/jcb.26102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/28/2017] [Indexed: 11/06/2022]
Abstract
The cardiomyocyte differentiation from mouse embryonic stem cells (mESCs) is a dynamic and complex process that involved in the precision regulation of histone acetylation. The formation of action potential (AP) in mature cardiomyocytes is based on the expression pattern of Na+ , Ca2+ , and K+ ion channels, in which the slow delayed rectifier potassium current (IKs ), the rapid delayed rectifier potassium current (IKr ) and the inwardly rectifying Kir current (IK1 ) mainly contribute to repolarization for AP in different species. However, the expression status of potassium channels conducted IKs , IKr , and IK1 in cardiomyocyte differentiation are not fully defined. Here, we investigated the expression pattern of the slow delayed rectifier potassium channel and the rapid delayed rectifier potassium channel using a model of mouse cardiomyocyte differentiation under different conditions of histone acetylation. We found that expression levels of both the delayed rectifier potassium channel and the inwardly rectifying potassium channel were more sensitive to histone hyperacetylation during differentiation from mESCs into cardiomyocytes. Especially, histone H4 hyperacetylation induced by Class I HDACs inhibitors promoted the expression profiles of potassium channels (Kcnj2, Kcnj3, Kcnj5, Kcnj11, and Kcnh2) in the process. Our results provide a clue for expression status of potassium channels which may be essential to forming functional cardiomyocyte in the cardiac lineage commitment of mESC. J. Cell. Biochem. 118: 4460-4467, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhigang Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenjing Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiujuan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Kang Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Miao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Luying Peng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
28
|
Affiliation(s)
- Muna Ali Abdalla
- Faculty of Agriculture, Department of Food Science and Technology, University of Khartoum, Khartoum North, Sudan
| |
Collapse
|