1
|
Kaneda N. [Studies on the Isolation and Molecular Mechanisms of Bioactive Phytochemicals]. YAKUGAKU ZASSHI 2022; 142:977-991. [PMID: 36047225 DOI: 10.1248/yakushi.22-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies on the isolation and molecular mechanisms of phytochemicals with anti-tumor or anti-inflammatory properties are important to developing new drugs for cancer and neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. In the course of a study to screen bioactive isoflavones from Erythrina poeppigiana (Leguminosae), we isolated an isoflavone with potent apoptosis-inducing activity against human leukemia HL-60 cells. It was designated erypoegin K. The studies demonstrated an enantiomer, (S)-erypoegin K, displayed selective cytotoxic activity, was a novel inhibitor of topoisomerase II, and possessed anti-tumor activity both in vitro and in vivo. We identified other apoptosis-inducing isoflavones with the ability to inhibit glyoxalase I. Dimeric acridone alkaloids, carbazole alkaloids, and coumarin and quinoline derivatives-all obtained mainly from plants in the family Rutaceae-induced apoptosis of HL-60 cells via the production of reactive oxygen species and mitochondrial dysfunction. We also identified terpenoid coumarins, carbazole quinones, rotenoid derivatives, and quinolone alkaloids with anti-inflammatory activities. These compounds reduced nitric oxide (NO) production from RAW264.7 macrophage cells stimulated with lipopolysaccharides and interferon-γ. Some of the compounds displayed neuroprotective activity by reducing NO production. This review primarily describes our recent studies on erypoegin K, and other compounds with apoptosis-inducing and anti-inflammatory activities.
Collapse
|
2
|
Hikita K, Yamakage Y, Okunaga H, Motoyama Y, Matsuyama H, Matsuoka K, Murata T, Nakayoshi T, Oda A, Kato K, Tanaka H, Asao N, Dan S, Kaneda N. (S)-Erypoegin K, an isoflavone isolated from Erythrina poeppigiana, is a novel inhibitor of topoisomerase IIα: Induction of G2 phase arrest in human gastric cancer cells. Bioorg Med Chem 2020; 30:115904. [PMID: 33341500 DOI: 10.1016/j.bmc.2020.115904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Erypoegin K, an isoflavone isolated from the stem bark of Erythrina poeppigiana, has a single chiral carbon in its structure and exists naturally as a racemic mixture. Our previous study showed (S)-erypoegin K selectively exhibits potent anti-proliferative and apoptosis-inducing activity against human leukemia HL-60 cells. To identify the target molecule of (S)-erypoegin K, we employed the human cancer cell panel analysis (termed JFCR39) coupled with a drug sensitivity database of pharmacologically well-characterized drugs for comparison using the COMPARE algorithm. (S)-erypoegin K exhibited a similar profile to that of etoposide, suggesting the molecular target for erypoegin K may be topoisomerase II (Topo II). Subsequent experiments using purified human Topo IIα established that the (S)-isomer selectively stabilizes the cleavage complex composed of double-stranded plasmid DNA and the enzyme. Moreover, (S)-erypoegin K inhibited decatenation of kinetoplast DNA. Molecular docking studies clearly indicated specific binding of the (S)-isomer to the active site of Topo IIα involving hydrogen bonds that help stabilize the cleavage complex. (S)-erypoegin K displayed potent cytotoxic activity against two human gastric cancer cells GCIY and MKN-1 with IC50 values of 0.270 and 0.327 μM, respectively, and induced enzyme activities of caspase 3 and 9. Cell cycle analysis showed marked cell cycle arrest at G2 phase in both cell lines. (S)-erypoegin K also displayed significant antitumor activity toward GCIY xenografted mice. The present study suggests (S)-erypoegin K acts as a Topo II inhibitor to block the G2/M transition of cancer cells.
Collapse
Affiliation(s)
- Kiyomi Hikita
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yuko Yamakage
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Honoka Okunaga
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yui Motoyama
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Haruka Matsuyama
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kenta Matsuoka
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Tomoki Nakayoshi
- Laboratory of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Akifumi Oda
- Laboratory of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kuniki Kato
- Chubu TLO, Nagoya Industrial Science Research Institute, VBL, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hitoshi Tanaka
- Laboratory of Natural Product Chemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Naoki Asao
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; Division of Chemistry and Materials, Graduate School of Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Norio Kaneda
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
3
|
Hikita K, Saigusa S, Takeuchi Y, Matsuyama H, Nagai R, Kato K, Murata T, Tanaka H, Wagh YS, Asao N, Kaneda N. Induction of enantio-selective apoptosis in human leukemia HL-60 cells by (S)-erypoegin K, an isoflavone isolated from Erythrina poeppigiana. Bioorg Med Chem 2020; 28:115490. [DOI: 10.1016/j.bmc.2020.115490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022]
|
4
|
Hwang D, Kim M, Park H, Jeong MI, Jung W, Kim B. Natural Products and Acute Myeloid Leukemia: A Review Highlighting Mechanisms of Action. Nutrients 2019; 11:nu11051010. [PMID: 31058874 PMCID: PMC6567155 DOI: 10.3390/nu11051010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Recent findings have shown great potential of alternative interventions such as immunotherapy and natural products for acute myeloid leukemia (AML). This study aims to review the anti-AML effect of various natural compounds. Natural compounds were classified into five groups: alkaloids, carotenoids, nitrogen-containing compounds, organosulfur compounds or phenolics based on each compound’s chemical properties. Fifty-eight studies were collected and reviewed in this article. Phenolics are the most abundant group to have an apoptotic effect over AML cells, while other groups have also shown significant apoptotic effects. Some compounds induced apoptosis by regulating unique mechanism like human telomerase reverse transcriptase (hTERT) or laminin receptor (67LR), while others modified caspases, poly (adp-ribose) polymerase (PARP) and p53. Further study is required to identify side-effects of potent compounds and the synergistic effects of combination of two or more natural compounds or existing conventional anti-AML drugs to treat this dreadful disease.
Collapse
Affiliation(s)
- Dongwon Hwang
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Minsun Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Woojin Jung
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|