1
|
Saeki T, Yamamoto S, Akaki J, Tanaka T, Nakasone M, Ikeda H, Wang W, Inoue M, Manse Y, Ninomiya K, Morikawa T. Ameliorative effect of bofutsushosan (Fangfengtongshengsan) extract on the progression of aging-induced obesity. J Nat Med 2024; 78:576-589. [PMID: 38662301 DOI: 10.1007/s11418-024-01803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to compare fat accumulation in young and aged mice raised on a high-fat diet and to characterize the obesity-reducing effects of a Kampo medicine, bofutsushosan (BTS; fangfengtongshengsan in Chinese). Aged mice fed a high-fat diet containing 2% BTS extract for 28 days exhibited a significant reduction in weight gain and accumulation of visceral and subcutaneous fat, which were greater degree of reduction than those of the young mice. When the treatment period was extended to two months, the serum aspartate aminotransferase and alanine aminotransferase levels and the accumulation of fat droplets in the hepatocytes decreased. The mRNA expression of mitochondrial uncoupling protein 1 (UCP1) in the brown adipose tissue was significantly reduced in the aged mice compared to the young mice but increased by 2% in the BTS-treated aged mice. Additionally, the effect of BTS extract on oleic acid-albumin-induced triglyceride accumulation in hepatoblastoma-derived HepG2 cells was significantly inhibited in a concentration-dependent manner. Evaluation of the single crude drug extracts revealed that Forsythia Fruit, Schizonepeta Spike, and Rhubarb were the active components in BTS extract. These results suggest that BTS extract is effective against visceral, subcutaneous, and ectopic fats in the liver, which tend to accumulate with aging. Thus, BTS extract is useful in preventing and ameliorating the development of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Takafumi Saeki
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan.
| | - Saya Yamamoto
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Junji Akaki
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Takahiro Tanaka
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Misaki Nakasone
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Hidemasa Ikeda
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Ma J, Liu W, Wang X, Lu C, Hao Z, Wang Y, Ding Y, Li Y. Cnidium officinale Makino: Phytology, Phytochemistry, Toxicology, Pharmacology and Prescriptions (1967-2023). Chem Biodivers 2024; 21:e202301639. [PMID: 38062000 DOI: 10.1002/cbdv.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Cnidium officinale Makino (COM), a perennial herbaceous plant in the Apiaceous family, widely distribute in Eastern Asia and Asia-Temperate. It has a long history application as a traditional medicine for invigorating the blood and removing blood stasis, and also has been employed to diet, pesticide, herbal bathing materials, the cosmetic and skin care industry. However, there has been no associated review of literature in the past half a century (1967-2023). By searching the international authoritative databases and collecting 229 literatures closely related to COM, herewith a comprehensive and systematic review was conducted. The phytology includes plant distribution and botanical characteristics. The phytochemistry covers 8 major categories, 208 compounds in total, and the quantitative determination of 14 monomer compounds, total polyphenols and total flavonoids. The clinical trial in pregnant women and toxic experiments in mice, the pharmacology of 7 aspects and 82 frequently used prescriptions are summarized. It is expected that this paper will provide forward-looking scientific thinking and literature support for the further modern research, development and utilization of COM.
Collapse
Affiliation(s)
- Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
3
|
Takagi K, Sugihira T, Kitamura M, Kawai M, Mitsuguchi Y, Tsukamoto K, Nakanishi H, Makino T. Inhibitory effect of Bofutsushosan (Fangfengtongshengsan) extract on the absorption of fructose in rats and mice. J Nat Med 2023; 77:535-543. [PMID: 37040005 DOI: 10.1007/s11418-023-01697-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
Bofutsushosan (BTS; fangfengtongshengsan in Chinese) is a formula in traditional Japanese Kampo and Chinese medicine comprising 18 crude drugs and used to treat obesity and metabolic syndrome. In our previous study, BTS boiling water extract inhibited the uptake of fructose absorbed via glucose transporter 5 into cultured cells. In this study, the inhibitory effect of BTS extract on the absorption of fructose from the intestine was investigated in vivo. The extract of BTS was orally administered to rats at doses equivalent to 25-fold of the daily dose for humans. One minute after sample administration, fructose was orally administered and blood samples were collected from the jugular vein 0.5, 1, 1.5, 2, and 4 h after the administration of fructose. The absorption of fructose from the intestine was significantly reduced by treatment with BTS extract, and this in vivo study reproduced previous in vitro results. Subsequently, the blood samples were collected from the portal vein 30 min after the oral administration of fructose in mice. BTS extract significantly reduced fructose absorption in mice, and compared the effect of modified BTS samples by removing one to several crude drugs from BTS. We found that the dried rhizome of Rheum palmatum (RR) significantly contributed to the inhibitory effect of BTS on fructose absorption. We found sennoside A to be the active ingredient of RR for the inhibition of fructose absorption, and that its effect almost saturated at a dose of 3 mg/kg. These results support the action mechanisms of BTS when used for the treatment of obesity in clinics and drug stores.
Collapse
Affiliation(s)
- Kohei Takagi
- Basic Research and Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Takashi Sugihira
- Basic Research and Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Miho Kitamura
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Mami Kawai
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Yoko Mitsuguchi
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Kosei Tsukamoto
- Internal Medicine and Functional Food Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Hirofumi Nakanishi
- Safety Design Center, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
4
|
Oenothein B in Eucalyptus Leaf Extract Suppresses Fructose Absorption in Caco-2 Cells. Molecules 2021; 27:molecules27010122. [PMID: 35011353 PMCID: PMC8746427 DOI: 10.3390/molecules27010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but not glucose absorption); however, its active compound has not yet been identified. Therefore, we evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell monolayer model cultured on membrane filters were exposed to fructose with or without the ELE. Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL. Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63% at a final concentration of 5 μg/mL. Oenothein B did not affect glucose absorption. In contrast, the other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused by dietary fructose consumption.
Collapse
|
5
|
Batsukh Z, Toume K, Javzan B, Kazuma K, Cai SQ, Hayashi S, Kawahara N, Maruyama T, Komatsu K. Metabolomic profiling of Saposhnikoviae Radix from Mongolia by LC-IT-TOF-MS/MS and multivariate statistical analysis. J Nat Med 2019; 74:170-188. [PMID: 31578667 DOI: 10.1007/s11418-019-01361-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 11/25/2022]
Abstract
Saposhnikoviae Radix (SR) is a commonly used crude drug that is obtained from the root and rhizome of Saposhnikovia divaricata which is distributed throughout China, Korea, Mongolia, and Russia. To evaluate the quality of Mongolian S. divaricata, metabolomic profiling of 43 plant specimens from different regions of Mongolia, as well as 8 SR samples and 2 plant specimens from China, were conducted by liquid chromatography-ion-trap-time-of-flight-mass spectrometer (LC-IT-TOF-MS). LC-MS profiles of the specimens showed uniformity and 30 compounds were tentatively identified, including 13 chromones and 17 coumarins. Among them, 16 compounds were isolated and unambiguously verified by comparing them with the spectroscopic data of standard compounds. Orthogonal partial least squares-discriminant analysis (OPLS-DA) based on LC-MS data from 7 Mongolian specimens and 8 Chinese SR samples as well as 2 plant specimens revealed that these 2 groups were clearly distinguishable and that Mongolian specimens were characterized by an abundance of prim-O-glucosylcimifugin (1). Moreover, the OPLS-DA of the Mongolian specimens showed that they can be discriminated by their growing regions based on the content of 8 chromones. The total content of dihydrofurochromones 1-3 was relatively higher in the specimens from Khalkhgol in the far eastern part of Mongolia, while contents of 10, 11, 15, and 16 were higher in those from Holonbuir in the eastern part. Based on this research, the roots of S. divaricata from Mongolia have potential as a new resource of SR in Kampo medicine.
Collapse
Affiliation(s)
- Zolboo Batsukh
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazufumi Toume
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Batkhuu Javzan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar-46, Mongolia
| | - Kohei Kazuma
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shao-Qing Cai
- School of Pharmaceutical Sciences, Peking University, 38 Xue-yuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Shigeki Hayashi
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, 1-2 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Takuro Maruyama
- Division of Pharmacognosy, Phytochemistry and Narcotics, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Katsuko Komatsu
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|