1
|
Chen J, Yu D, Li X, Deng Q, Yang H, Chen L, Bai L. A review of Brucea javanica: metabolites, pharmacology and clinical application. Front Pharmacol 2024; 14:1317620. [PMID: 38371913 PMCID: PMC10871038 DOI: 10.3389/fphar.2023.1317620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
This review examines advances in the metabolites, pharmacological research, and therapeutic applications of the medicinal fruit of Brucea javanica (L.) Merr. Brucea javanica (BJ) is derived from the fruit of the Brucea javanica (L.) Merr. There are nearly 200 metabolites present in BJ, and due to the diversity of its metabolites, BJ has a wide range of pharmacological effects. The traditional pharmacological effects of BJ include anti-dysentery, anti-malaria, etc. The research investigating the contemporary pharmacological impacts of BJ mainly focuses on its anti-tumor properties. In the article, the strong monomeric metabolites among these pharmacological effects were preliminarily screened. Regarding the pharmacological mechanism of action, current research has initially explored BJ's pharmacological agent and molecular signaling pathways. However, a comprehensive system has yet to be established. BJ preparations have been utilized in clinical settings and have demonstrated effectiveness. Nevertheless, clinical research is primarily limited to observational studies, and there is a need for higher-quality research evidence to support its clinical application. There are still many difficulties and obstacles in studying BJ. However, it is indisputable that BJ is a botanical drugs with significant potential for application, and it is expected to have broader global usage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Guangyuan Central Hospital of Sichuan Province, Guangyuan, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Guanghan People's Hospital, Guanghan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Jiang W, Ma W, Guan J, He Y, Su Z, Ma Z. Integerrima A–E, phenylethanoid glycosides from the stem of Callicarpa integerrima. J Nat Med 2023; 77:496-507. [DOI: 10.1007/s11418-023-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
|
3
|
Hu ZF, Su JC, Sun X, Xia RF, Wu JL, Fu XN, Zhang BZ, Chen JC, Wan LS. Brujavanoids A-U, structurally diverse apotirucallane-type triterpenoids from Brucea javanica and their anti-inflammatory effects. Bioorg Chem 2022; 127:106012. [PMID: 35830756 DOI: 10.1016/j.bioorg.2022.106012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Extensive phytochemical investigation on the methanol extract of the inflorescences, twigs, and leaves of Brucea javanica led to the isolation and identification of 27 triterpenoids, including 21 previously undescribed ones, named brujavanoids A-U (1-21). Their structures were determined based on comprehensive spectroscopic analysis and single-crystal X-ray diffraction. Of these compounds, brujavanoid A (1) represents the first apotirucallane-type triterpenoid with a novel 19(10 → 9)abeo motif, and brujavanoids B and C (2-3) are the first apotirucallane-type triterpenoids with a rarely occurring 14-hydorxy-15,16-epoxy fragment. All the isolates were evaluated for their anti-inflammatory effect in an LPS-activated RAW264.7 cells model. Furthermore, the most active one, brujavanoid E (5), can suppress the transcriptional expression of typical pro-inflammatory mediators and inhibit the nuclear translocation of NF-κB p65 in the LPS- activated RAW264.7 cells.
Collapse
Affiliation(s)
- Zhuo-Fan Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing Sun
- Hebei Technological Innovation Center of Chiral Medicine, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Le Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiao-Na Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Bing-Zhu Zhang
- Hebei Technological Innovation Center of Chiral Medicine, Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China.
| | - Jia-Chun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
4
|
Zhang J, Xu HX, Dou YX, Huang QH, Xian YF, Lin ZX. Major Constituents From Brucea javanica and Their Pharmacological Actions. Front Pharmacol 2022; 13:853119. [PMID: 35370639 PMCID: PMC8971814 DOI: 10.3389/fphar.2022.853119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao-Xing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong-Hui Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Yan-Fang Xian, ; Zhi-Xiu Lin,
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Yan-Fang Xian, ; Zhi-Xiu Lin,
| |
Collapse
|
5
|
Li KW, Liang YY, Wang Q, Li Y, Zhou SJ, Wei HC, Zhou CZ, Wan XH. Brucea javanica: A review on anticancer of its pharmacological properties and clinical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153560. [PMID: 33858739 DOI: 10.1016/j.phymed.2021.153560] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The dried fruits of Brucea javanica (L.) Merr (BJ) is being widely investigated, both in lab and in clinic, to explore its potential anticancer activity and molecular mechanism involved. PURPOSE We appraised the available literature and suggested the future research directions to improve the medicinal value of BJ. METHOD In this review, we have summarized the scientific findings from experimental and clinical studies regarding the anticancer activity and mechanisms. RESULTS Numerous studies have reported that BJ exerts anticancer effect on various types of cancer lines through inhibiting cell proliferation, inducing apoptosis, inhibiting migration/invasion, inducing autophagy and restraining angiogenesis. Brucea javanica triggers the generation of reactive oxygen species (ROS), release of cytochrome C, activation of mitochondrial apoptosis pathway and regulation of a series of signal pathways and proteins related to cancer. The molecular mechanism involved are inhibiting the PI3K/Akt/mTOR, NF-κB and Nrf2-Notch1 pathways; up or down modulating the levels of p53, p62, p21, Bax, and Bcl-2 respectively, and inhibiting the expression of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Brucea javanica's efficacy in treating cancer patients either as a main or supportive treatment is also discussed in this review. CONCLUSION This review will serve as a comprehensive resource of BJ's potential as anticancer agent and its molecular pathways. The analysis of the literature suggests that BJ can serve as a potential candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Kun-Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yi-Yu Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Sheng-Jun Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Hao-Cheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Chang-Zheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Xin-Huan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| |
Collapse
|
6
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as baphicacanthcusine A from Baphicacanthus cusia.
Collapse
|