1
|
Mata-Pesquera M, Fabregat-Safont D, Sancho JV, Ibáñez M. Exploiting the triple quadrupole mass analyzer for the open detection and tentative identification of synthetic cannabinoid receptor agonists based on common fragmentation pathways. Anal Chim Acta 2024; 1329:343226. [PMID: 39396291 DOI: 10.1016/j.aca.2024.343226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The use of new psychoactive substances (NPS) has emerged as a significant public health concern globally, due to their unknown and unpredictable effects on both physical and mental health. Among them, synthetic cannabinoids receptor agonists (SCRAs) currently stand as the most widely consumed NPS family in Europe. Since the detection of JWH-018 in 2008, the structures of these compounds have evolved to circumvent legislation and/or enhance their effects, consequently increasing the number of reported SCRAs to be monitored. Therefore, new strategies are needed to identify these compounds, whether in seized products or in biological samples. RESULTS This study presents the development of an open method for detecting SCRAs employing a "pseudo-target" screening approach, a strategy previously developed and used in our laboratory for synthetic cathinones identification. The methodology involves monitoring the main product ions and neutral losses derived from 179 SCRAs of the third and fourth generations, based on their fragmentation pathways. This approach allows for the tentative identification of the SCRAs, supported also by the created database. The versatility of the developed methodology is highlighted, extending its utility beyond seizure products or 'legal highs', to biological samples. In this sense, it has been successfully applied not only to the detection of SCRAs in research chemicals but also in authentic urine from an anonymous SCRAs consumer, through the identification of a metabolite. SIGNIFICANCE This strategy will be particularly useful for the rapid detection of SCRAs in forensic and toxicological laboratories equipped with low-resolution MS/MS instrumentation. This is a valuable tool for the identification and monitoring of SCRAs across various contexts, significantly contributing to public health and forensic security efforts. It is especially beneficial for healthcare providers, enabling them to make informed treatment decisions.
Collapse
Affiliation(s)
- María Mata-Pesquera
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain; Applied Metabolomics Research Group, Hospital del Mar Research Institute, 88 Doctor Aiguader, 08003, Barcelona, Spain
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071, Castelló de la Plana, Spain.
| |
Collapse
|
2
|
Evans-Newman KC, Schneider GL, Perera NT. Classification of Mass Spectral Data to Assist in the Identification of Novel Synthetic Cannabinoids. Molecules 2024; 29:4646. [PMID: 39407576 PMCID: PMC11478242 DOI: 10.3390/molecules29194646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Detection and characterization of newly synthesized cannabinoids (NSCs) is challenging due to the lack of availability of reference standards and chemical data. In this study, a binary classification system was developed and validated using partial least square discriminant analysis (PLS-DA) by utilizing readily available mass spectral data of known drugs to assist in the identification of previously unknown NCSs. First, a binary classification model was developed to discriminate cannabinoids and cannabinoid-related compounds from other drug classes. Then, a classification model was developed to discriminate classical (THC-related) from synthetic cannabinoids. Additional models were developed based on the most abundant functional groups including core groups such as indole, indazole, azaindole, and naphthoylpyrrole, as well as head and tail groups including 4-fluorobenzyl (FUB) and 5-Fluoropentyl (5-F). The predictive ability of these models was tested via both cross-validation and external validation. The results show that all models developed are highly accurate. Additionally, latent variables (LVs) of each model provide useful mass to charge (m/z) for discrimination between classes, which further facilitates the identification of different functional groups of previously unknown drug molecules.
Collapse
Affiliation(s)
| | | | - Nuwan T. Perera
- Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723, USA
| |
Collapse
|
3
|
Yang Y, Sun S, Yang S, Yang Q, Lu X, Wang X, Yu Q, Huo X, Qian X. Structural annotation of unknown molecules in a miniaturized mass spectrometer based on a transformer enabled fragment tree method. Commun Chem 2024; 7:109. [PMID: 38740942 DOI: 10.1038/s42004-024-01189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Structural annotation of small molecules in tandem mass spectrometry has always been a central challenge in mass spectrometry analysis, especially using a miniaturized mass spectrometer for on-site testing. Here, we propose the Transformer enabled Fragment Tree (TeFT) method, which combines various types of fragmentation tree models and a deep learning Transformer module. It is aimed to generate the specific structure of molecules de novo solely from mass spectrometry spectra. The evaluation results on different open-source databases indicated that the proposed model achieved remarkable results in that the majority of molecular structures of compounds in the test can be successfully recognized. Also, the TeFT has been validated on a miniaturized mass spectrometer with low-resolution spectra for 16 flavonoid alcohols, achieving complete structure prediction for 8 substances. Finally, TeFT confirmed the structure of the compound contained in a Chinese medicine substance called the Anweiyang capsule. These results indicate that the TeFT method is suitable for annotating fragmentation peaks with clear fragmentation rules, particularly when applied to on-site mass spectrometry with lower mass resolution.
Collapse
Affiliation(s)
- Yiming Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuang Sun
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuyuan Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qin Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinqiong Lu
- CHIN Instrument (Hefei) Co., Ltd., Hefei, 231200, China
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Quan Yu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xinming Huo
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Mata-Pesquera M, Fabregat-Safont D, Gil C, Ventura M, Steinmetz FP, Ibáñez M. Characterization of the recently detected cathinone N-cyclohexyl butylone: From structure elucidation to in silico supported pharmacological/toxicological considerations. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Kumar S, Baggi TR. Analytical Methods for Herbal Products Containing Synthetic Cannabinoids: A Review. Forensic Chem 2022. [DOI: 10.1016/j.forc.2021.100396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
A deep generative model enables automated structure elucidation of novel psychoactive substances. NAT MACH INTELL 2021. [DOI: 10.1038/s42256-021-00407-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Fabregat-Safont D, Barneo-Muñoz M, Carbón X, Hernández F, Martinez-Garcia F, Ventura M, Stove CP, Sancho JV, Ibáñez M. Understanding the pharmacokinetics of synthetic cathinones: Evaluation of the blood-brain barrier permeability of 13 related compounds in rats. Addict Biol 2020; 26:e12979. [PMID: 33289258 DOI: 10.1111/adb.12979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are the second most commonly seized new psychoactive substance family in Europe. These compounds have been related to several intoxication cases, including fatalities. Although the pharmacological effects, metabolism, and pharmacokinetics of cathinones have been studied, there is little information about the permeability of these compounds through the blood-brain barrier (BBB). This is an important parameter to understand the behavior and potency of cathinones. In this work, 13 selected cathinones have been analyzed in telencephalon tissue from Sprague-Dawley rats intraperitoneally dosed at 3 mg/kg. Our results revealed a direct relationship between compound polarity and BBB permeability, with higher permeability for the more polar cathinones. The chemical moieties present in the cathinone had an important impact on the BBB permeability, with lengthening of the α-alkyl chain or functionalization of the aromatic ring with alkyl moieties resulting in lower concentration in telencephalon tissue. Our data suggest that transport of cathinones is a carrier-mediated process, similar to cocaine transport across the BBB.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| | - Manuela Barneo-Muñoz
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, Jaume I University, Castellón, Spain
| | - Xoán Carbón
- Energy Control, Asociación Bienestar y Desarrollo, Barcelona, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| | - Ferran Martinez-Garcia
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, Jaume I University, Castellón, Spain
| | - Mireia Ventura
- Energy Control, Asociación Bienestar y Desarrollo, Barcelona, Spain
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| |
Collapse
|
8
|
Rice J, Kannan AM, Castrignanò E, Jagadeesan K, Kasprzyk-Hordern B. Wastewater-based epidemiology combined with local prescription analysis as a tool for temporalmonitoring of drugs trends - A UK perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139433. [PMID: 32498013 DOI: 10.1016/j.scitotenv.2020.139433] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
This paper reports the application of wastewater-based epidemiology (WBE) for the monitoring of one city in the UK in years 2014-2018 as a means of 1) exploring relative temporal changes of illicit drug usage trends across 5 sampling weeks in 5 years, (2) assessing policy impact in reducing drug consumption, focussing particularly on mephedrone, which was classified as a class B drug in the UK in 2010, and the effects of subsequent regulation such as the novel psychoactive substances (NPS) bill of 2016, (3) investigating temporal changes in consumption of prescription pharmaceuticals vs illicit drug usage, and (4) comparing consumption of prescription drugs with WBE to enable more accurate verification of prescription drugs with abuse potential. Mephedrone was quantified only for the first two years of the study, 2014-2015, and remained undetected for the next three years of the study. This shows that given enough time changes in drug policy can have an effect on drug consumption. However, after the introduction of the 2016 NPS bill, between the third and fourth study years, there was an observable increase in the consumption of "classic" drugs of abuse such as cocaine, MDMA and ketamine suggesting a shift away from novel psychoactives. The unique prescription dataset allowed for a more accurate calculation of heroin consumption using morphine by examining other sources morphine. Additionally, for compounds with controlled prescription like methadone, trends in consumption estimated by wastewater and trends in prescription correlated. Wastewater-based epidemiology is a powerful tool for examining whole populations and determining the efficacy and direction of government actions on health, as it can, alongside prescription and wider monitoring data, provide a clear insight into what is being consumed by a population and what action is needed to meet required goals.
Collapse
Affiliation(s)
- Jack Rice
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom
| | - Andrew M Kannan
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom
| | - Erika Castrignanò
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom; Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, King's College London, London SE1 9NH, United Kingdom
| | - Kishore Jagadeesan
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom
| | | |
Collapse
|
9
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
10
|
Gamage TF, Barrus DG, Kevin RC, Finlay DB, Lefever TW, Patel PR, Grabenauer MA, Glass M, McGregor IS, Wiley JL, Thomas BF. In vitro and in vivo pharmacological evaluation of the synthetic cannabinoid receptor agonist EG-018. Pharmacol Biochem Behav 2020; 193:172918. [PMID: 32247816 DOI: 10.1016/j.pbb.2020.172918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/26/2020] [Indexed: 01/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) possess high abuse liability and complex toxicological profiles, making them serious threats to public health. EG-018 is a SCRA that has been detected in both illicit products and human samples, but it has received little attention to date. The current studies investigated EG-018 at human CB1 and CB2 receptors expressed in HEK293 cells in [3H]CP55,940 competition binding, [35S]GTPγS binding and forskolin-stimulated cAMP production. EG-018 was also tested in vivo for its ability to produce cannabimimetic and abuse-related effects in the cannabinoid tetrad and THC drug discrimination, respectively. EG-018 exhibited high affinity at CB1 (21 nM) and at CB2 (7 nM), but in contrast to typical SCRAs, behaved as a weak partial agonist in [35S]GTPγS binding, exhibiting lower efficacy but greater potency, than that of THC at CB1 and similar potency and efficacy at CB2. EG-018 inhibited forskolin-stimulated cAMP with similar efficacy but lower potency, compared to THC, which was likely due to high receptor density facilitating saturation of this signaling pathway. In mice, EG-018 (100 mg/kg, 30 min) administered intraperitoneally (i.p.) did not produce effects in the tetrad or drug discrimination nor did it shift THC's ED50 value in drug discrimination when administered before THC, suggesting EG-018 has negligible occupancy of brain CB1 receptors following i.p. administration. Following intravenous (i.v.) administration, EG-018 (56 mg/kg) produced hypomotility, catalepsy, and hypothermia, but only catalepsy was blocked by the selective CB1 antagonist rimonabant (3 mg/kg, i.v.). Additional studies of EG-018 and its structural analogues could provide further insight into how cannabinoids exert efficacy through the cannabinoid receptors.
Collapse
Affiliation(s)
- Thomas F Gamage
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Daniel G Barrus
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Richard C Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Purvi R Patel
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Megan A Grabenauer
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Iain S McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| |
Collapse
|
11
|
Fabregat-Safont D, Mardal M, Noble C, Cannaert A, Stove CP, Sancho JV, Linnet K, Hernández F, Ibáñez M. Comprehensive investigation on synthetic cannabinoids: Metabolic behavior and potency testing, using 5F-APP-PICA and AMB-FUBINACA as model compounds. Drug Test Anal 2019; 11:1358-1368. [PMID: 31192526 DOI: 10.1002/dta.2659] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Synthetic cannabinoids (SCs) represented 45% of new psychoactive substances seizures in Europe (data from 2016). The consumption of SCs is an issue of concern due to their still unknown toxicity and effects on human health, the great variety of compounds synthetized, and the continuous modifications being made to their chemical structure to avoid regulatory issues. These compounds are extensively metabolized in the organism and often cannot be detected as the intact molecule in human urine. The monitoring of SCs in forensic samples must be performed by the analysis of their metabolites. In this work, a workflow for the comprehensive study of SC consumption is proposed and applied to 5F-APP-PICA (also known as PX 1 or SRF-30) and AMB-FUBINACA (also known as FUB-AMB or MMB-FUBINACA), based not only on the elucidation of their metabolites but also including functional data using the NanoLuc approach, previously published. Both cannabinoids were completely metabolized by human hepatocytes (12 and 8 metabolites were elucidated by high resolution mass spectrometry for 5F-APP-PICA and AMB-FUBINACA, respectively) and therefore suitable consumption markers are proposed. The bioassays revealed that 5F-APP-PICA presented lower activity than AMB-FUBINACA at CB1 and CB2 receptors, based on the half maximal effective concentration (EC50 ) and the maximum response (Emax ). These results are in agreement with the different intoxication cases found in the literature for AMB-FUBINACA.
Collapse
Affiliation(s)
| | - Marie Mardal
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medicinal Sciences, University of Copenhagen, Denmark
| | - Carolina Noble
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medicinal Sciences, University of Copenhagen, Denmark
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Juan V Sancho
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Kristian Linnet
- Department of Forensic Medicine, Section of Forensic Chemistry, Faculty of Health and Medicinal Sciences, University of Copenhagen, Denmark
| | - Félix Hernández
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - María Ibáñez
- Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| |
Collapse
|
12
|
Mardal M, Andreasen MF, Mollerup CB, Stockham P, Telving R, Thomaidis NS, Diamanti KS, Linnet K, Dalsgaard PW. HighResNPS.com: An Online Crowd-Sourced HR-MS Database for Suspect and Non-targeted Screening of New Psychoactive Substances. J Anal Toxicol 2019; 43:520-527. [DOI: 10.1093/jat/bkz030] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 04/05/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
The number of new psychoactive substances (NPS) is constantly increasing. However, although the number might be large, most NPS have a low prevalence of use, so keeping screening libraries updated with the relevant analytical targets becomes a challenge. One way to ensure sufficient screening coverage is to use shared high resolution-mass spectrometry (HR-MS) databases, such as HighResNPS.com: a free, online, spreadsheet-format, crowd-sourced HR-MS database for NPS screening. The aims of this study were (i) to present the database to the scientific community and (ii) to verify that the HighResNPS database can be utilized in suspect screening workflows for LC–HR-MS instruments and software from four different instrument vendors. A sample was spiked with 10 NPS, and participating laboratories then analyzed the sample with their respective HR-MS vendor platforms and the HighResNPS database. The HighResNPS data were obtained via a spreadsheet converted to fit the import specifications of the different vendor platforms. Suspect screening was performed using LC–HR-MS vendor platforms from Thermo Fisher, Waters, Bruker and Agilent. All 10 NPS were identified in at least three workflows used for the four different vendor platforms. Multiple users have submitted data to HighResNPS for the same NPS, which resulted in multiple true-positive identifications for these NPS. Suspect screening with LC–HR-MS can be based on diagnostic fragment ions reported by users of different vendor platforms and can support NPS identification in biological samples and/or seizure analyses when no reference standard is available in-house. The present work clearly demonstrates that HighResNPS data is compatible with instruments and screening software from at least four different vendor platforms. The database can thus serve as a useful add-on in LC–HR-MS screening workflows.
Collapse
Affiliation(s)
- Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s vej 11, Copenhagen Ø, Denmark
| | - Mette Findal Andreasen
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| | - Christian Brinch Mollerup
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s vej 11, Copenhagen Ø, Denmark
| | - Peter Stockham
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia, Australia
| | - Rasmus Telving
- Section for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Konstantina S Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s vej 11, Copenhagen Ø, Denmark
| | - Petur Weihe Dalsgaard
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V’s vej 11, Copenhagen Ø, Denmark
| |
Collapse
|
13
|
Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue? Clin Ther 2018; 40:1457-1466. [DOI: 10.1016/j.clinthera.2018.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
14
|
Rapid tentative identification of synthetic cathinones in seized products taking advantage of the full capabilities of triple quadrupole analyzer. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0432-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Bijlsma L, Gil-Solsona R, Hernández F, Sancho JV. What about the herb? A new metabolomics approach for synthetic cannabinoid drug testing. Anal Bioanal Chem 2018; 410:5107-5112. [PMID: 29909458 DOI: 10.1007/s00216-018-1182-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Synthetic cannabinoids (SCs) are consumed as legal alternative to cannabis and often allow passing drug-screening tests. Their rapid transience on the drug scene, combined with their mostly unknown metabolic profiles, creates a scenario with constantly moving analytical targets, making their monitoring and identification challenging. The development of fast screening strategies for SCs, not directly focused on their chemical structure, as an alternative to the commonly applied target acquisition methods, would be highly appreciated in forensic and public health laboratories. An innovative untargeted metabolomics approach, focused on herbal components commonly used for 'spice' products, was applied. Saliva samples of healthy volunteers were collected at pre-dose and after smoking herbal components and analysed by high-resolution mass spectrometry. The data obtained, combined with appropriate statistical analysis, allowed to highlight and elucidate two markers (scopoletin and N,N-bis(2-hydroxyethyl)dodecylamine), which ratio permitted to differentiate herbal smokers from non-smokers. The proposed strategy will allow discriminating potential positives, on the basis of the analysis of two markers identified in the herbal blends. This work is presented as a step forward in SC drug testing, promoting a smart first-line screening approach, which will allow reducing the number of samples to be further investigated by more sophisticated HRMS methods. Graphical abstract The development of an alternative, generic screening methods of synthetic cannabinoids, not directly based on the chemical structure, in order to provide fast response on its potential consumption.
Collapse
Affiliation(s)
- Lubertus Bijlsma
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain.
| | - Rubén Gil-Solsona
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain
| | - Juan Vicente Sancho
- Research Institute for Pesticides and Water, University Jaume I, Avda Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
16
|
Cannaert A, Storme J, Hess C, Auwärter V, Wille SMR, Stove CP. Activity-Based Detection of Cannabinoids in Serum and Plasma Samples. Clin Chem 2018; 64:918-926. [DOI: 10.1373/clinchem.2017.285361] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Synthetic cannabinoids are the largest group of new psychoactive substances monitored by the European Monitoring Centre of Drugs and Drug Addiction. The rapid proliferation of novel analogs makes the detection of these new derivatives challenging and has initiated considerable interest in the development of so-called “untargeted” screening strategies to detect these compounds.
METHODS
We developed new, stable bioassays in which cannabinoid receptor activation by cannabinoids led to recruitment of truncated β-arrestin 2 (βarr2) to the cannabinoid receptors, resulting in functional complementation of a split luciferase, allowing readout via bioluminescence. Aliquots (500 μL) of authentic serum (n = 45) and plasma (n = 73) samples were used for simple liquid–liquid extraction with hexane:ethyl acetate (99:1 v/v). Following evaporation and reconstitution in 100 μL of Opti-MEM® I/methanol (50/50 v/v), 10 μL of these extracts was analyzed in the bioassays.
RESULTS
Truncation of βarr2 significantly (for both cannabinoid receptors; P = 0.0034 and 0.0427) improved the analytical sensitivity over the previously published bioassays applied on urine samples. The new bioassays detected cannabinoid receptor activation by authentic serum or plasma extracts, in which synthetic cannabinoids were present at low- or sub-nanogram per milliliter concentration or in which Δ9-tetrahydrocannabinol was present at concentrations >12 ng/mL. For synthetic cannabinoid detection, analytical sensitivity was 82%, with an analytical specificity of 100%.
CONCLUSIONS
The bioassays have the potential to serve as a first-line screening tool for (synthetic) cannabinoid activity in serum or plasma and may complement conventional analytical assays and/or precede analytical (mass spectrometry based) confirmation.
Collapse
Affiliation(s)
- Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology, Brussels, Belgium
| | - Jolien Storme
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Cornelius Hess
- Institute of Forensic Medicine, University Bonn, Forensic Toxicology, Bonn, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah M R Wille
- Laboratory of Toxicology, National Institute of Criminalistics and Criminology, Brussels, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Metabolism of the new synthetic cannabinoid EG-018 in human hepatocytes by high-resolution mass spectrometry. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0404-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Cannaert A, Franz F, Auwärter V, Stove CP. Activity-Based Detection of Consumption of Synthetic Cannabinoids in Authentic Urine Samples Using a Stable Cannabinoid Reporter System. Anal Chem 2017; 89:9527-9536. [DOI: 10.1021/acs.analchem.7b02552] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Florian Franz
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center—University
of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse
9, 79104 Freiburg, Germany
| | - Volker Auwärter
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center—University
of Freiburg, Faculty of Medicine, University of Freiburg, Albertstrasse
9, 79104 Freiburg, Germany
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|